--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.944516129032258 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2565 - Accuracy: 0.9445 ## Model description This is subsequent example of knowledge-distillation used [`transformers.Trainer.hyperparameter_search`](https://huggingface.co./docs/transformers/main_classes/trainer#transformers.Trainer.hyperparameter_search) with the default Optuna back to find optimal values for the following hyperparameters: - `num_train_epochs` - `alpha` - `temperature` ## Intended uses & limitations More information needed ## Training and evaluation data The training and evaluation data come straight from the `train` and `validation` splits in the clinc_oos dataset, respectively; and tokenized using the `distilbert-base-uncased` tokenization. ## Training procedure Hyperparameter-search was done via default backend Optuna, leading to the values below. Please see page 228 in Chapter 8: Making Transformers Efficient in Production, Natural Language Processing with Transformers, May 2022. ### Training hyperparameters The following hyperparameters were used during training: - num_epochs: 10 - alpha: 0.5858821400787321 - temperature: 4.917005721212045 - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 8675309 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 2.0029 | 0.6910 | | 2.3585 | 2.0 | 636 | 1.0585 | 0.8626 | | 2.3585 | 3.0 | 954 | 0.6001 | 0.9058 | | 0.9378 | 4.0 | 1272 | 0.4072 | 0.9348 | | 0.4053 | 5.0 | 1590 | 0.3274 | 0.9387 | | 0.4053 | 6.0 | 1908 | 0.2951 | 0.9426 | | 0.2433 | 7.0 | 2226 | 0.2734 | 0.9439 | | 0.1871 | 8.0 | 2544 | 0.2625 | 0.9452 | | 0.1871 | 9.0 | 2862 | 0.2566 | 0.9452 | | 0.166 | 10.0 | 3180 | 0.2565 | 0.9445 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.2+cu121 - Datasets 1.16.1 - Tokenizers 0.15.1