--- library_name: transformers language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 metrics: - name: Wer type: wer value: 0.13509754146816427 --- # Whisper Small Dv - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1743 - Wer Ortho: 0.6296 - Wer: 0.1351 - Cer: 0.0968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:| | 0.2081 | 0.8143 | 250 | 0.2399 | 0.7501 | 0.1767 | 0.1249 | | 0.1206 | 1.6287 | 500 | 0.1743 | 0.6296 | 0.1351 | 0.0968 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.2