--- license: mit tags: - generated_from_trainer datasets: - dutch_social metrics: - accuracy - f1 - precision - recall model-index: - name: robbert-twitter-sentiment results: - task: name: Text Classification type: text-classification dataset: name: dutch_social type: dutch_social args: dutch_social metrics: - name: Accuracy type: accuracy value: 0.749 - name: F1 type: f1 value: 0.7491844724992662 - name: Precision type: precision value: 0.7493911755249737 - name: Recall type: recall value: 0.749 --- # robbert-twitter-sentiment This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co./pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset. It achieves the following results on the evaluation set: - Loss: 0.6818 - Accuracy: 0.749 - F1: 0.7492 - Precision: 0.7494 - Recall: 0.749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7485 | 1.0 | 188 | 0.7670 | 0.692 | 0.6915 | 0.6920 | 0.692 | | 0.5202 | 2.0 | 376 | 0.6818 | 0.749 | 0.7492 | 0.7494 | 0.749 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.0.0 - Tokenizers 0.12.0