--- license: mit tags: - generated_from_trainer datasets: - dutch_social metrics: - accuracy - f1 - precision - recall model-index: - name: robbert-twitter-sentiment-tokenized results: - task: name: Text Classification type: text-classification dataset: name: dutch_social type: dutch_social args: dutch_social metrics: - name: Accuracy type: accuracy value: 0.814 - name: F1 type: f1 value: 0.8132800039281481 - name: Precision type: precision value: 0.8131073640029836 - name: Recall type: recall value: 0.814 --- # robbert-twitter-sentiment-tokenized This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co./pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset. It achieves the following results on the evaluation set: - Loss: 0.5473 - Accuracy: 0.814 - F1: 0.8133 - Precision: 0.8131 - Recall: 0.814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6895 | 1.0 | 282 | 0.6307 | 0.7433 | 0.7442 | 0.7500 | 0.7433 | | 0.4948 | 2.0 | 564 | 0.5189 | 0.8053 | 0.8062 | 0.8081 | 0.8053 | | 0.2642 | 3.0 | 846 | 0.5473 | 0.814 | 0.8133 | 0.8131 | 0.814 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6