--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-inaturalist results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9483333333333334 --- # vit-base-patch16-224-in21k-finetuned-inaturalist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0056 - Accuracy: 0.9483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 3.2007 | 0.0333 | | No log | 2.0 | 5 | 3.1889 | 0.0444 | | No log | 2.8 | 7 | 3.1747 | 0.0639 | | 3.1888 | 4.0 | 10 | 3.1442 | 0.1097 | | 3.1888 | 4.8 | 12 | 3.1183 | 0.1458 | | 3.1888 | 6.0 | 15 | 3.0710 | 0.2194 | | 3.1888 | 6.8 | 17 | 3.0331 | 0.3042 | | 3.0673 | 8.0 | 20 | 2.9627 | 0.4389 | | 3.0673 | 8.8 | 22 | 2.9109 | 0.4944 | | 3.0673 | 10.0 | 25 | 2.8360 | 0.5764 | | 3.0673 | 10.8 | 27 | 2.7809 | 0.6056 | | 2.8151 | 12.0 | 30 | 2.6958 | 0.6542 | | 2.8151 | 12.8 | 32 | 2.6401 | 0.6764 | | 2.8151 | 14.0 | 35 | 2.5583 | 0.6944 | | 2.8151 | 14.8 | 37 | 2.5034 | 0.7083 | | 2.5143 | 16.0 | 40 | 2.4202 | 0.7347 | | 2.5143 | 16.8 | 42 | 2.3662 | 0.7375 | | 2.5143 | 18.0 | 45 | 2.2884 | 0.7444 | | 2.5143 | 18.8 | 47 | 2.2374 | 0.7569 | | 2.2236 | 20.0 | 50 | 2.1632 | 0.7778 | | 2.2236 | 20.8 | 52 | 2.1175 | 0.7833 | | 2.2236 | 22.0 | 55 | 2.0528 | 0.7931 | | 2.2236 | 22.8 | 57 | 2.0099 | 0.7958 | | 1.9677 | 24.0 | 60 | 1.9488 | 0.8014 | | 1.9677 | 24.8 | 62 | 1.9113 | 0.8097 | | 1.9677 | 26.0 | 65 | 1.8582 | 0.8139 | | 1.9677 | 26.8 | 67 | 1.8242 | 0.8139 | | 1.7467 | 28.0 | 70 | 1.7740 | 0.8111 | | 1.7467 | 28.8 | 72 | 1.7458 | 0.8056 | | 1.7467 | 30.0 | 75 | 1.7013 | 0.8181 | | 1.7467 | 30.8 | 77 | 1.6714 | 0.8194 | | 1.5765 | 32.0 | 80 | 1.6316 | 0.8264 | | 1.5765 | 32.8 | 82 | 1.6083 | 0.8236 | | 1.5765 | 34.0 | 85 | 1.5738 | 0.8292 | | 1.5765 | 34.8 | 87 | 1.5531 | 0.8347 | | 1.4431 | 36.0 | 90 | 1.5228 | 0.8431 | | 1.4431 | 36.8 | 92 | 1.5046 | 0.8444 | | 1.4431 | 38.0 | 95 | 1.4780 | 0.8472 | | 1.4431 | 38.8 | 97 | 1.4608 | 0.8458 | | 1.3049 | 40.0 | 100 | 1.4357 | 0.8458 | | 1.3049 | 40.8 | 102 | 1.4188 | 0.85 | | 1.3049 | 42.0 | 105 | 1.3949 | 0.8528 | | 1.3049 | 42.8 | 107 | 1.3808 | 0.8528 | | 1.2312 | 44.0 | 110 | 1.3636 | 0.8458 | | 1.2312 | 44.8 | 112 | 1.3513 | 0.8486 | | 1.2312 | 46.0 | 115 | 1.3329 | 0.8528 | | 1.2312 | 46.8 | 117 | 1.3193 | 0.8528 | | 1.1368 | 48.0 | 120 | 1.3025 | 0.8528 | | 1.1368 | 48.8 | 122 | 1.2945 | 0.8542 | | 1.1368 | 50.0 | 125 | 1.2820 | 0.8528 | | 1.1368 | 50.8 | 127 | 1.2705 | 0.8569 | | 1.0821 | 52.0 | 130 | 1.2616 | 0.8583 | | 1.0821 | 52.8 | 132 | 1.2545 | 0.8556 | | 1.0821 | 54.0 | 135 | 1.2423 | 0.8542 | | 1.0821 | 54.8 | 137 | 1.2332 | 0.8597 | | 1.0232 | 56.0 | 140 | 1.2210 | 0.8639 | | 1.0232 | 56.8 | 142 | 1.2161 | 0.8625 | | 1.0232 | 58.0 | 145 | 1.2094 | 0.8569 | | 1.0232 | 58.8 | 147 | 1.2057 | 0.8542 | | 0.9814 | 60.0 | 150 | 1.1973 | 0.85 | | 0.9814 | 60.8 | 152 | 1.1919 | 0.8486 | | 0.9814 | 62.0 | 155 | 1.1825 | 0.8625 | | 0.9814 | 62.8 | 157 | 1.1799 | 0.8597 | | 0.9415 | 64.0 | 160 | 1.1716 | 0.8597 | | 0.9415 | 64.8 | 162 | 1.1665 | 0.8625 | | 0.9415 | 66.0 | 165 | 1.1611 | 0.8639 | | 0.9415 | 66.8 | 167 | 1.1600 | 0.8625 | | 0.9135 | 68.0 | 170 | 1.1577 | 0.8639 | | 0.9135 | 68.8 | 172 | 1.1547 | 0.8639 | | 0.9135 | 70.0 | 175 | 1.1493 | 0.8639 | | 0.9135 | 70.8 | 177 | 1.1464 | 0.8611 | | 0.8946 | 72.0 | 180 | 1.1423 | 0.8556 | | 0.8946 | 72.8 | 182 | 1.1402 | 0.8611 | | 0.8946 | 74.0 | 185 | 1.1375 | 0.8583 | | 0.8946 | 74.8 | 187 | 1.1360 | 0.8597 | | 0.8866 | 76.0 | 190 | 1.1344 | 0.8625 | | 0.8866 | 76.8 | 192 | 1.1334 | 0.8639 | | 0.8866 | 78.0 | 195 | 1.1324 | 0.8639 | | 0.8866 | 78.8 | 197 | 1.1320 | 0.8639 | | 0.8798 | 80.0 | 200 | 1.1319 | 0.8639 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1