--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 96935939-6069-4eca-96ff-cdae9e8cb7af results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 57978299522ad104_train_data.json ds_type: json format: custom path: /workspace/input_data/57978299522ad104_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: brixeus/96935939-6069-4eca-96ff-cdae9e8cb7af hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/57978299522ad104_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 87ecf3ea-1b69-450f-b498-622c01e39891 wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: 87ecf3ea-1b69-450f-b498-622c01e39891 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 96935939-6069-4eca-96ff-cdae9e8cb7af This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co./unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.2963 | | 8.4803 | 0.0018 | 9 | 1.8854 | | 7.1409 | 0.0036 | 18 | 1.7100 | | 6.7016 | 0.0054 | 27 | 1.6524 | | 6.637 | 0.0072 | 36 | 1.6263 | | 6.2794 | 0.0090 | 45 | 1.6119 | | 6.2643 | 0.0108 | 54 | 1.6049 | | 6.6138 | 0.0125 | 63 | 1.5997 | | 6.0646 | 0.0143 | 72 | 1.5968 | | 6.0643 | 0.0161 | 81 | 1.5953 | | 6.6755 | 0.0179 | 90 | 1.5948 | | 6.0766 | 0.0197 | 99 | 1.5946 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1