brittlewis12
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
3 |
+
inference: false
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: other
|
8 |
+
license_name: llama3.1
|
9 |
+
license_link: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct/blob/main/LICENSE
|
10 |
+
model_creator: meta-llama
|
11 |
+
model_name: Meta-Llama-3.1-8B-Instruct
|
12 |
+
model_type: llama
|
13 |
+
tags:
|
14 |
+
- facebook
|
15 |
+
- meta
|
16 |
+
- pytorch
|
17 |
+
- llama
|
18 |
+
- llama-3
|
19 |
+
- llama-3.1
|
20 |
+
quantized_by: brittlewis12
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
# Llama 3.1 8B Instruct GGUF
|
25 |
+
|
26 |
+
**Original model**: [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
|
27 |
+
|
28 |
+
**Model creator**: [Meta](https://huggingface.co/meta-llama)
|
29 |
+
|
30 |
+
> The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
|
31 |
+
|
32 |
+
This repo contains GGUF format model files for Meta’s Llama 3.1 8B Instruct,
|
33 |
+
**updated as of 2024-07-27** to incorporate [long context improvements](https://github.com/ggerganov/llama.cpp/pull/8676), as well as changes to the huggingface model itself.
|
34 |
+
|
35 |
+
Learn more on Meta’s [Llama 3 page](https://llama.meta.com/llama3).
|
36 |
+
|
37 |
+
### What is GGUF?
|
38 |
+
|
39 |
+
GGUF is a file format for representing AI models. It is the third version of the format,
|
40 |
+
introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
|
41 |
+
Converted with llama.cpp build 3472 (revision [b5e9546](https://github.com/ggerganov/llama.cpp/commits/b5e95468b1676e1e5c9d80d1eeeb26f542a38f42)),
|
42 |
+
using [autogguf](https://github.com/brittlewis12/autogguf).
|
43 |
+
|
44 |
+
### Prompt template
|
45 |
+
|
46 |
+
```
|
47 |
+
<|start_header_id|>system<|end_header_id|>
|
48 |
+
|
49 |
+
{{system_prompt}}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
50 |
+
|
51 |
+
{{prompt}}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
52 |
+
|
53 |
+
|
54 |
+
```
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac!
|
59 |
+
|
60 |
+
![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg)
|
61 |
+
|
62 |
+
[cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device:
|
63 |
+
- create & save **Characters** with custom system prompts & temperature settings
|
64 |
+
- download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)!
|
65 |
+
- make it your own with custom **Theme colors**
|
66 |
+
- powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming!
|
67 |
+
- **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)!
|
68 |
+
- follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## Original Model Evaluation
|
73 |
+
|
74 |
+
<table>
|
75 |
+
<tr>
|
76 |
+
<td><strong>Category</strong>
|
77 |
+
</td>
|
78 |
+
<td><strong>Benchmark</strong>
|
79 |
+
</td>
|
80 |
+
<td><strong># Shots</strong>
|
81 |
+
</td>
|
82 |
+
<td><strong>Metric</strong>
|
83 |
+
</td>
|
84 |
+
<td><strong>Llama 3 8B Instruct</strong>
|
85 |
+
</td>
|
86 |
+
<td><strong>Llama 3.1 8B Instruct</strong>
|
87 |
+
</td>
|
88 |
+
<td><strong>Llama 3 70B Instruct</strong>
|
89 |
+
</td>
|
90 |
+
<td><strong>Llama 3.1 70B Instruct</strong>
|
91 |
+
</td>
|
92 |
+
<td><strong>Llama 3.1 405B Instruct</strong>
|
93 |
+
</td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td rowspan="4" >General
|
97 |
+
</td>
|
98 |
+
<td>MMLU
|
99 |
+
</td>
|
100 |
+
<td>5
|
101 |
+
</td>
|
102 |
+
<td>macro_avg/acc
|
103 |
+
</td>
|
104 |
+
<td>68.5
|
105 |
+
</td>
|
106 |
+
<td>69.4
|
107 |
+
</td>
|
108 |
+
<td>82.0
|
109 |
+
</td>
|
110 |
+
<td>83.6
|
111 |
+
</td>
|
112 |
+
<td>87.3
|
113 |
+
</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td>MMLU (CoT)
|
117 |
+
</td>
|
118 |
+
<td>0
|
119 |
+
</td>
|
120 |
+
<td>macro_avg/acc
|
121 |
+
</td>
|
122 |
+
<td>65.3
|
123 |
+
</td>
|
124 |
+
<td>73.0
|
125 |
+
</td>
|
126 |
+
<td>80.9
|
127 |
+
</td>
|
128 |
+
<td>86.0
|
129 |
+
</td>
|
130 |
+
<td>88.6
|
131 |
+
</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>MMLU-Pro (CoT)
|
135 |
+
</td>
|
136 |
+
<td>5
|
137 |
+
</td>
|
138 |
+
<td>micro_avg/acc_char
|
139 |
+
</td>
|
140 |
+
<td>45.5
|
141 |
+
</td>
|
142 |
+
<td>48.3
|
143 |
+
</td>
|
144 |
+
<td>63.4
|
145 |
+
</td>
|
146 |
+
<td>66.4
|
147 |
+
</td>
|
148 |
+
<td>73.3
|
149 |
+
</td>
|
150 |
+
</tr>
|
151 |
+
<tr>
|
152 |
+
<td>IFEval
|
153 |
+
</td>
|
154 |
+
<td>
|
155 |
+
</td>
|
156 |
+
<td>
|
157 |
+
</td>
|
158 |
+
<td>76.8
|
159 |
+
</td>
|
160 |
+
<td>80.4
|
161 |
+
</td>
|
162 |
+
<td>82.9
|
163 |
+
</td>
|
164 |
+
<td>87.5
|
165 |
+
</td>
|
166 |
+
<td>88.6
|
167 |
+
</td>
|
168 |
+
</tr>
|
169 |
+
<tr>
|
170 |
+
<td rowspan="2" >Reasoning
|
171 |
+
</td>
|
172 |
+
<td>ARC-C
|
173 |
+
</td>
|
174 |
+
<td>0
|
175 |
+
</td>
|
176 |
+
<td>acc
|
177 |
+
</td>
|
178 |
+
<td>82.4
|
179 |
+
</td>
|
180 |
+
<td>83.4
|
181 |
+
</td>
|
182 |
+
<td>94.4
|
183 |
+
</td>
|
184 |
+
<td>94.8
|
185 |
+
</td>
|
186 |
+
<td>96.9
|
187 |
+
</td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td>GPQA
|
191 |
+
</td>
|
192 |
+
<td>0
|
193 |
+
</td>
|
194 |
+
<td>em
|
195 |
+
</td>
|
196 |
+
<td>34.6
|
197 |
+
</td>
|
198 |
+
<td>30.4
|
199 |
+
</td>
|
200 |
+
<td>39.5
|
201 |
+
</td>
|
202 |
+
<td>41.7
|
203 |
+
</td>
|
204 |
+
<td>50.7
|
205 |
+
</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td rowspan="4" >Code
|
209 |
+
</td>
|
210 |
+
<td>HumanEval
|
211 |
+
</td>
|
212 |
+
<td>0
|
213 |
+
</td>
|
214 |
+
<td>pass@1
|
215 |
+
</td>
|
216 |
+
<td>60.4
|
217 |
+
</td>
|
218 |
+
<td>72.6
|
219 |
+
</td>
|
220 |
+
<td>81.7
|
221 |
+
</td>
|
222 |
+
<td>80.5
|
223 |
+
</td>
|
224 |
+
<td>89.0
|
225 |
+
</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td>MBPP ++ base version
|
229 |
+
</td>
|
230 |
+
<td>0
|
231 |
+
</td>
|
232 |
+
<td>pass@1
|
233 |
+
</td>
|
234 |
+
<td>70.6
|
235 |
+
</td>
|
236 |
+
<td>72.8
|
237 |
+
</td>
|
238 |
+
<td>82.5
|
239 |
+
</td>
|
240 |
+
<td>86.0
|
241 |
+
</td>
|
242 |
+
<td>88.6
|
243 |
+
</td>
|
244 |
+
</tr>
|
245 |
+
<tr>
|
246 |
+
<td>Multipl-E HumanEval
|
247 |
+
</td>
|
248 |
+
<td>0
|
249 |
+
</td>
|
250 |
+
<td>pass@1
|
251 |
+
</td>
|
252 |
+
<td>-
|
253 |
+
</td>
|
254 |
+
<td>50.8
|
255 |
+
</td>
|
256 |
+
<td>-
|
257 |
+
</td>
|
258 |
+
<td>65.5
|
259 |
+
</td>
|
260 |
+
<td>75.2
|
261 |
+
</td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td>Multipl-E MBPP
|
265 |
+
</td>
|
266 |
+
<td>0
|
267 |
+
</td>
|
268 |
+
<td>pass@1
|
269 |
+
</td>
|
270 |
+
<td>-
|
271 |
+
</td>
|
272 |
+
<td>52.4
|
273 |
+
</td>
|
274 |
+
<td>-
|
275 |
+
</td>
|
276 |
+
<td>62.0
|
277 |
+
</td>
|
278 |
+
<td>65.7
|
279 |
+
</td>
|
280 |
+
</tr>
|
281 |
+
<tr>
|
282 |
+
<td rowspan="2" >Math
|
283 |
+
</td>
|
284 |
+
<td>GSM-8K (CoT)
|
285 |
+
</td>
|
286 |
+
<td>8
|
287 |
+
</td>
|
288 |
+
<td>em_maj1@1
|
289 |
+
</td>
|
290 |
+
<td>80.6
|
291 |
+
</td>
|
292 |
+
<td>84.5
|
293 |
+
</td>
|
294 |
+
<td>93.0
|
295 |
+
</td>
|
296 |
+
<td>95.1
|
297 |
+
</td>
|
298 |
+
<td>96.8
|
299 |
+
</td>
|
300 |
+
</tr>
|
301 |
+
<tr>
|
302 |
+
<td>MATH (CoT)
|
303 |
+
</td>
|
304 |
+
<td>0
|
305 |
+
</td>
|
306 |
+
<td>final_em
|
307 |
+
</td>
|
308 |
+
<td>29.1
|
309 |
+
</td>
|
310 |
+
<td>51.9
|
311 |
+
</td>
|
312 |
+
<td>51.0
|
313 |
+
</td>
|
314 |
+
<td>68.0
|
315 |
+
</td>
|
316 |
+
<td>73.8
|
317 |
+
</td>
|
318 |
+
</tr>
|
319 |
+
<tr>
|
320 |
+
<td rowspan="4" >Tool Use
|
321 |
+
</td>
|
322 |
+
<td>API-Bank
|
323 |
+
</td>
|
324 |
+
<td>0
|
325 |
+
</td>
|
326 |
+
<td>acc
|
327 |
+
</td>
|
328 |
+
<td>48.3
|
329 |
+
</td>
|
330 |
+
<td>82.6
|
331 |
+
</td>
|
332 |
+
<td>85.1
|
333 |
+
</td>
|
334 |
+
<td>90.0
|
335 |
+
</td>
|
336 |
+
<td>92.0
|
337 |
+
</td>
|
338 |
+
</tr>
|
339 |
+
<tr>
|
340 |
+
<td>BFCL
|
341 |
+
</td>
|
342 |
+
<td>0
|
343 |
+
</td>
|
344 |
+
<td>acc
|
345 |
+
</td>
|
346 |
+
<td>60.3
|
347 |
+
</td>
|
348 |
+
<td>76.1
|
349 |
+
</td>
|
350 |
+
<td>83.0
|
351 |
+
</td>
|
352 |
+
<td>84.8
|
353 |
+
</td>
|
354 |
+
<td>88.5
|
355 |
+
</td>
|
356 |
+
</tr>
|
357 |
+
<tr>
|
358 |
+
<td>Gorilla Benchmark API Bench
|
359 |
+
</td>
|
360 |
+
<td>0
|
361 |
+
</td>
|
362 |
+
<td>acc
|
363 |
+
</td>
|
364 |
+
<td>1.7
|
365 |
+
</td>
|
366 |
+
<td>8.2
|
367 |
+
</td>
|
368 |
+
<td>14.7
|
369 |
+
</td>
|
370 |
+
<td>29.7
|
371 |
+
</td>
|
372 |
+
<td>35.3
|
373 |
+
</td>
|
374 |
+
</tr>
|
375 |
+
<tr>
|
376 |
+
<td>Nexus (0-shot)
|
377 |
+
</td>
|
378 |
+
<td>0
|
379 |
+
</td>
|
380 |
+
<td>macro_avg/acc
|
381 |
+
</td>
|
382 |
+
<td>18.1
|
383 |
+
</td>
|
384 |
+
<td>38.5
|
385 |
+
</td>
|
386 |
+
<td>47.8
|
387 |
+
</td>
|
388 |
+
<td>56.7
|
389 |
+
</td>
|
390 |
+
<td>58.7
|
391 |
+
</td>
|
392 |
+
</tr>
|
393 |
+
<tr>
|
394 |
+
<td>Multilingual
|
395 |
+
</td>
|
396 |
+
<td>Multilingual MGSM (CoT)
|
397 |
+
</td>
|
398 |
+
<td>0
|
399 |
+
</td>
|
400 |
+
<td>em
|
401 |
+
</td>
|
402 |
+
<td>-
|
403 |
+
</td>
|
404 |
+
<td>68.9
|
405 |
+
</td>
|
406 |
+
<td>-
|
407 |
+
</td>
|
408 |
+
<td>86.9
|
409 |
+
</td>
|
410 |
+
<td>91.6
|
411 |
+
</td>
|
412 |
+
</tr>
|
413 |
+
</table>
|
414 |
+
|
415 |
+
#### Multilingual benchmarks
|
416 |
+
|
417 |
+
<table>
|
418 |
+
<tr>
|
419 |
+
<td><strong>Category</strong>
|
420 |
+
</td>
|
421 |
+
<td><strong>Benchmark</strong>
|
422 |
+
</td>
|
423 |
+
<td><strong>Language</strong>
|
424 |
+
</td>
|
425 |
+
<td><strong>Llama 3.1 8B</strong>
|
426 |
+
</td>
|
427 |
+
<td><strong>Llama 3.1 70B</strong>
|
428 |
+
</td>
|
429 |
+
<td><strong>Llama 3.1 405B</strong>
|
430 |
+
</td>
|
431 |
+
</tr>
|
432 |
+
<tr>
|
433 |
+
<td rowspan="9" ><strong>General</strong>
|
434 |
+
</td>
|
435 |
+
<td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
|
436 |
+
</td>
|
437 |
+
<td>Portuguese
|
438 |
+
</td>
|
439 |
+
<td>62.12
|
440 |
+
</td>
|
441 |
+
<td>80.13
|
442 |
+
</td>
|
443 |
+
<td>84.95
|
444 |
+
</td>
|
445 |
+
</tr>
|
446 |
+
<tr>
|
447 |
+
<td>Spanish
|
448 |
+
</td>
|
449 |
+
<td>62.45
|
450 |
+
</td>
|
451 |
+
<td>80.05
|
452 |
+
</td>
|
453 |
+
<td>85.08
|
454 |
+
</td>
|
455 |
+
</tr>
|
456 |
+
<tr>
|
457 |
+
<td>Italian
|
458 |
+
</td>
|
459 |
+
<td>61.63
|
460 |
+
</td>
|
461 |
+
<td>80.4
|
462 |
+
</td>
|
463 |
+
<td>85.04
|
464 |
+
</td>
|
465 |
+
</tr>
|
466 |
+
<tr>
|
467 |
+
<td>German
|
468 |
+
</td>
|
469 |
+
<td>60.59
|
470 |
+
</td>
|
471 |
+
<td>79.27
|
472 |
+
</td>
|
473 |
+
<td>84.36
|
474 |
+
</td>
|
475 |
+
</tr>
|
476 |
+
<tr>
|
477 |
+
<td>French
|
478 |
+
</td>
|
479 |
+
<td>62.34
|
480 |
+
</td>
|
481 |
+
<td>79.82
|
482 |
+
</td>
|
483 |
+
<td>84.66
|
484 |
+
</td>
|
485 |
+
</tr>
|
486 |
+
<tr>
|
487 |
+
<td>Hindi
|
488 |
+
</td>
|
489 |
+
<td>50.88
|
490 |
+
</td>
|
491 |
+
<td>74.52
|
492 |
+
</td>
|
493 |
+
<td>80.31
|
494 |
+
</td>
|
495 |
+
</tr>
|
496 |
+
<tr>
|
497 |
+
<td>Thai
|
498 |
+
</td>
|
499 |
+
<td>50.32
|
500 |
+
</td>
|
501 |
+
<td>72.95
|
502 |
+
</td>
|
503 |
+
<td>78.21
|
504 |
+
</td>
|
505 |
+
</tr>
|
506 |
+
</table>
|