brittlewis12 commited on
Commit
3872a52
·
verified ·
1 Parent(s): 0e9069e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +506 -0
README.md ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
3
+ inference: false
4
+ pipeline_tag: text-generation
5
+ language:
6
+ - en
7
+ license: other
8
+ license_name: llama3.1
9
+ license_link: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct/blob/main/LICENSE
10
+ model_creator: meta-llama
11
+ model_name: Meta-Llama-3.1-8B-Instruct
12
+ model_type: llama
13
+ tags:
14
+ - facebook
15
+ - meta
16
+ - pytorch
17
+ - llama
18
+ - llama-3
19
+ - llama-3.1
20
+ quantized_by: brittlewis12
21
+
22
+ ---
23
+
24
+ # Llama 3.1 8B Instruct GGUF
25
+
26
+ **Original model**: [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
27
+
28
+ **Model creator**: [Meta](https://huggingface.co/meta-llama)
29
+
30
+ > The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
31
+
32
+ This repo contains GGUF format model files for Meta’s Llama 3.1 8B Instruct,
33
+ **updated as of 2024-07-27** to incorporate [long context improvements](https://github.com/ggerganov/llama.cpp/pull/8676), as well as changes to the huggingface model itself.
34
+
35
+ Learn more on Meta’s [Llama 3 page](https://llama.meta.com/llama3).
36
+
37
+ ### What is GGUF?
38
+
39
+ GGUF is a file format for representing AI models. It is the third version of the format,
40
+ introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
41
+ Converted with llama.cpp build 3472 (revision [b5e9546](https://github.com/ggerganov/llama.cpp/commits/b5e95468b1676e1e5c9d80d1eeeb26f542a38f42)),
42
+ using [autogguf](https://github.com/brittlewis12/autogguf).
43
+
44
+ ### Prompt template
45
+
46
+ ```
47
+ <|start_header_id|>system<|end_header_id|>
48
+
49
+ {{system_prompt}}<|eot_id|><|start_header_id|>user<|end_header_id|>
50
+
51
+ {{prompt}}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
52
+
53
+
54
+ ```
55
+
56
+ ---
57
+
58
+ ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac!
59
+
60
+ ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg)
61
+
62
+ [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device:
63
+ - create & save **Characters** with custom system prompts & temperature settings
64
+ - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)!
65
+ - make it your own with custom **Theme colors**
66
+ - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming!
67
+ - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)!
68
+ - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date
69
+
70
+ ---
71
+
72
+ ## Original Model Evaluation
73
+
74
+ <table>
75
+ <tr>
76
+ <td><strong>Category</strong>
77
+ </td>
78
+ <td><strong>Benchmark</strong>
79
+ </td>
80
+ <td><strong># Shots</strong>
81
+ </td>
82
+ <td><strong>Metric</strong>
83
+ </td>
84
+ <td><strong>Llama 3 8B Instruct</strong>
85
+ </td>
86
+ <td><strong>Llama 3.1 8B Instruct</strong>
87
+ </td>
88
+ <td><strong>Llama 3 70B Instruct</strong>
89
+ </td>
90
+ <td><strong>Llama 3.1 70B Instruct</strong>
91
+ </td>
92
+ <td><strong>Llama 3.1 405B Instruct</strong>
93
+ </td>
94
+ </tr>
95
+ <tr>
96
+ <td rowspan="4" >General
97
+ </td>
98
+ <td>MMLU
99
+ </td>
100
+ <td>5
101
+ </td>
102
+ <td>macro_avg/acc
103
+ </td>
104
+ <td>68.5
105
+ </td>
106
+ <td>69.4
107
+ </td>
108
+ <td>82.0
109
+ </td>
110
+ <td>83.6
111
+ </td>
112
+ <td>87.3
113
+ </td>
114
+ </tr>
115
+ <tr>
116
+ <td>MMLU (CoT)
117
+ </td>
118
+ <td>0
119
+ </td>
120
+ <td>macro_avg/acc
121
+ </td>
122
+ <td>65.3
123
+ </td>
124
+ <td>73.0
125
+ </td>
126
+ <td>80.9
127
+ </td>
128
+ <td>86.0
129
+ </td>
130
+ <td>88.6
131
+ </td>
132
+ </tr>
133
+ <tr>
134
+ <td>MMLU-Pro (CoT)
135
+ </td>
136
+ <td>5
137
+ </td>
138
+ <td>micro_avg/acc_char
139
+ </td>
140
+ <td>45.5
141
+ </td>
142
+ <td>48.3
143
+ </td>
144
+ <td>63.4
145
+ </td>
146
+ <td>66.4
147
+ </td>
148
+ <td>73.3
149
+ </td>
150
+ </tr>
151
+ <tr>
152
+ <td>IFEval
153
+ </td>
154
+ <td>
155
+ </td>
156
+ <td>
157
+ </td>
158
+ <td>76.8
159
+ </td>
160
+ <td>80.4
161
+ </td>
162
+ <td>82.9
163
+ </td>
164
+ <td>87.5
165
+ </td>
166
+ <td>88.6
167
+ </td>
168
+ </tr>
169
+ <tr>
170
+ <td rowspan="2" >Reasoning
171
+ </td>
172
+ <td>ARC-C
173
+ </td>
174
+ <td>0
175
+ </td>
176
+ <td>acc
177
+ </td>
178
+ <td>82.4
179
+ </td>
180
+ <td>83.4
181
+ </td>
182
+ <td>94.4
183
+ </td>
184
+ <td>94.8
185
+ </td>
186
+ <td>96.9
187
+ </td>
188
+ </tr>
189
+ <tr>
190
+ <td>GPQA
191
+ </td>
192
+ <td>0
193
+ </td>
194
+ <td>em
195
+ </td>
196
+ <td>34.6
197
+ </td>
198
+ <td>30.4
199
+ </td>
200
+ <td>39.5
201
+ </td>
202
+ <td>41.7
203
+ </td>
204
+ <td>50.7
205
+ </td>
206
+ </tr>
207
+ <tr>
208
+ <td rowspan="4" >Code
209
+ </td>
210
+ <td>HumanEval
211
+ </td>
212
+ <td>0
213
+ </td>
214
+ <td>pass@1
215
+ </td>
216
+ <td>60.4
217
+ </td>
218
+ <td>72.6
219
+ </td>
220
+ <td>81.7
221
+ </td>
222
+ <td>80.5
223
+ </td>
224
+ <td>89.0
225
+ </td>
226
+ </tr>
227
+ <tr>
228
+ <td>MBPP ++ base version
229
+ </td>
230
+ <td>0
231
+ </td>
232
+ <td>pass@1
233
+ </td>
234
+ <td>70.6
235
+ </td>
236
+ <td>72.8
237
+ </td>
238
+ <td>82.5
239
+ </td>
240
+ <td>86.0
241
+ </td>
242
+ <td>88.6
243
+ </td>
244
+ </tr>
245
+ <tr>
246
+ <td>Multipl-E HumanEval
247
+ </td>
248
+ <td>0
249
+ </td>
250
+ <td>pass@1
251
+ </td>
252
+ <td>-
253
+ </td>
254
+ <td>50.8
255
+ </td>
256
+ <td>-
257
+ </td>
258
+ <td>65.5
259
+ </td>
260
+ <td>75.2
261
+ </td>
262
+ </tr>
263
+ <tr>
264
+ <td>Multipl-E MBPP
265
+ </td>
266
+ <td>0
267
+ </td>
268
+ <td>pass@1
269
+ </td>
270
+ <td>-
271
+ </td>
272
+ <td>52.4
273
+ </td>
274
+ <td>-
275
+ </td>
276
+ <td>62.0
277
+ </td>
278
+ <td>65.7
279
+ </td>
280
+ </tr>
281
+ <tr>
282
+ <td rowspan="2" >Math
283
+ </td>
284
+ <td>GSM-8K (CoT)
285
+ </td>
286
+ <td>8
287
+ </td>
288
+ <td>em_maj1@1
289
+ </td>
290
+ <td>80.6
291
+ </td>
292
+ <td>84.5
293
+ </td>
294
+ <td>93.0
295
+ </td>
296
+ <td>95.1
297
+ </td>
298
+ <td>96.8
299
+ </td>
300
+ </tr>
301
+ <tr>
302
+ <td>MATH (CoT)
303
+ </td>
304
+ <td>0
305
+ </td>
306
+ <td>final_em
307
+ </td>
308
+ <td>29.1
309
+ </td>
310
+ <td>51.9
311
+ </td>
312
+ <td>51.0
313
+ </td>
314
+ <td>68.0
315
+ </td>
316
+ <td>73.8
317
+ </td>
318
+ </tr>
319
+ <tr>
320
+ <td rowspan="4" >Tool Use
321
+ </td>
322
+ <td>API-Bank
323
+ </td>
324
+ <td>0
325
+ </td>
326
+ <td>acc
327
+ </td>
328
+ <td>48.3
329
+ </td>
330
+ <td>82.6
331
+ </td>
332
+ <td>85.1
333
+ </td>
334
+ <td>90.0
335
+ </td>
336
+ <td>92.0
337
+ </td>
338
+ </tr>
339
+ <tr>
340
+ <td>BFCL
341
+ </td>
342
+ <td>0
343
+ </td>
344
+ <td>acc
345
+ </td>
346
+ <td>60.3
347
+ </td>
348
+ <td>76.1
349
+ </td>
350
+ <td>83.0
351
+ </td>
352
+ <td>84.8
353
+ </td>
354
+ <td>88.5
355
+ </td>
356
+ </tr>
357
+ <tr>
358
+ <td>Gorilla Benchmark API Bench
359
+ </td>
360
+ <td>0
361
+ </td>
362
+ <td>acc
363
+ </td>
364
+ <td>1.7
365
+ </td>
366
+ <td>8.2
367
+ </td>
368
+ <td>14.7
369
+ </td>
370
+ <td>29.7
371
+ </td>
372
+ <td>35.3
373
+ </td>
374
+ </tr>
375
+ <tr>
376
+ <td>Nexus (0-shot)
377
+ </td>
378
+ <td>0
379
+ </td>
380
+ <td>macro_avg/acc
381
+ </td>
382
+ <td>18.1
383
+ </td>
384
+ <td>38.5
385
+ </td>
386
+ <td>47.8
387
+ </td>
388
+ <td>56.7
389
+ </td>
390
+ <td>58.7
391
+ </td>
392
+ </tr>
393
+ <tr>
394
+ <td>Multilingual
395
+ </td>
396
+ <td>Multilingual MGSM (CoT)
397
+ </td>
398
+ <td>0
399
+ </td>
400
+ <td>em
401
+ </td>
402
+ <td>-
403
+ </td>
404
+ <td>68.9
405
+ </td>
406
+ <td>-
407
+ </td>
408
+ <td>86.9
409
+ </td>
410
+ <td>91.6
411
+ </td>
412
+ </tr>
413
+ </table>
414
+
415
+ #### Multilingual benchmarks
416
+
417
+ <table>
418
+ <tr>
419
+ <td><strong>Category</strong>
420
+ </td>
421
+ <td><strong>Benchmark</strong>
422
+ </td>
423
+ <td><strong>Language</strong>
424
+ </td>
425
+ <td><strong>Llama 3.1 8B</strong>
426
+ </td>
427
+ <td><strong>Llama 3.1 70B</strong>
428
+ </td>
429
+ <td><strong>Llama 3.1 405B</strong>
430
+ </td>
431
+ </tr>
432
+ <tr>
433
+ <td rowspan="9" ><strong>General</strong>
434
+ </td>
435
+ <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
436
+ </td>
437
+ <td>Portuguese
438
+ </td>
439
+ <td>62.12
440
+ </td>
441
+ <td>80.13
442
+ </td>
443
+ <td>84.95
444
+ </td>
445
+ </tr>
446
+ <tr>
447
+ <td>Spanish
448
+ </td>
449
+ <td>62.45
450
+ </td>
451
+ <td>80.05
452
+ </td>
453
+ <td>85.08
454
+ </td>
455
+ </tr>
456
+ <tr>
457
+ <td>Italian
458
+ </td>
459
+ <td>61.63
460
+ </td>
461
+ <td>80.4
462
+ </td>
463
+ <td>85.04
464
+ </td>
465
+ </tr>
466
+ <tr>
467
+ <td>German
468
+ </td>
469
+ <td>60.59
470
+ </td>
471
+ <td>79.27
472
+ </td>
473
+ <td>84.36
474
+ </td>
475
+ </tr>
476
+ <tr>
477
+ <td>French
478
+ </td>
479
+ <td>62.34
480
+ </td>
481
+ <td>79.82
482
+ </td>
483
+ <td>84.66
484
+ </td>
485
+ </tr>
486
+ <tr>
487
+ <td>Hindi
488
+ </td>
489
+ <td>50.88
490
+ </td>
491
+ <td>74.52
492
+ </td>
493
+ <td>80.31
494
+ </td>
495
+ </tr>
496
+ <tr>
497
+ <td>Thai
498
+ </td>
499
+ <td>50.32
500
+ </td>
501
+ <td>72.95
502
+ </td>
503
+ <td>78.21
504
+ </td>
505
+ </tr>
506
+ </table>