--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-fa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: fa split: test args: fa metrics: - name: Wer type: wer value: 35.00088651273169 --- # whisper-small-fa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.3028 - Wer: 35.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:------:|:---------------:|:-------:| | 0.0053 | 40.5515 | 100000 | 0.8333 | 36.2993 | | 0.0011 | 81.1030 | 200000 | 1.0030 | 35.9242 | | 0.0008 | 121.6545 | 300000 | 1.0865 | 35.6501 | | 0.0 | 162.2060 | 400000 | 1.1741 | 35.4823 | | 0.0 | 202.7575 | 500000 | 1.3028 | 35.0009 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1