--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-fa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: fa split: test args: fa metrics: - name: Wer type: wer value: 33.564735887399245 --- # whisper-small-fa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6225 - Wer: 33.5647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.0145 | 4.0552 | 10000 | 0.4324 | 35.2682 | | 0.0006 | 8.1103 | 20000 | 0.5496 | 33.7229 | | 0.0001 | 12.1655 | 30000 | 0.6225 | 33.5647 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1