File size: 1,900 Bytes
15a3e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-small-fa
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: fa
      split: test
      args: fa
    metrics:
    - name: Wer
      type: wer
      value: 33.564735887399245
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-fa

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6225
- Wer: 33.5647

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 30000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|
| 0.0145        | 4.0552  | 10000 | 0.4324          | 35.2682 |
| 0.0006        | 8.1103  | 20000 | 0.5496          | 33.7229 |
| 0.0001        | 12.1655 | 30000 | 0.6225          | 33.5647 |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1