File size: 1,192 Bytes
4cb2cd7
524ae85
 
4cb2cd7
524ae85
4cb2cd7
 
 
4cdcbb4
 
4cb2cd7
524ae85
65ecd1d
 
4cb2cd7
 
 
524ae85
 
 
 
4cb2cd7
 
 
524ae85
 
4cb2cd7
 
 
524ae85
4cb2cd7
 
524ae85
 
 
 
 
4cb2cd7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image

def example_inference():

    model_path = f"{os.path.dirname(os.path.abspath(__file__))}/model.pth"
    im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"

    net = BriaRMBG()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net.load_state_dict(torch.load(model_path, map_location=device))
    net.eval()    

    # prepare input
    model_input_size = [1024,1024]
    orig_im = io.imread(im_path)
    orig_im_size = orig_im.shape[0:2]
    image = preprocess_image(orig_im, model_input_size)

    if torch.cuda.is_available():
        image=image.cuda()

    # inference 
    result=net(image)

    # post process
    result_image = postprocess_image(result[0][0], orig_im_size)

    # save result
    pil_im = Image.fromarray(result_image)
    no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
    orig_image = Image.open(im_path)
    no_bg_image.paste(orig_image, mask=pil_im)
    no_bg_image.save("example_image_no_bg.png")


if __name__ == "__main__":
    example_inference()