--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 - OUTCOMESAI/medical_speech_corpus - pauleyc/radiology_audio_3_iphone_laptop_666_samples metrics: - wer model-index: - name: Whisper Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical STT Combined type: Dev372/Medical_STT_Dataset_1.1 metrics: - name: Wer type: wer value: 2.732222934016656 --- # Whisper Large This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Medical STT Combined dataset. It achieves the following results on the evaluation set: - Loss: 0.0969 - Wer Ortho: 4.8761 - Wer: 2.7322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0787 | 1.1364 | 500 | 0.0969 | 4.8761 | 2.7322 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3