File size: 1,838 Bytes
e6302d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_billsum_model

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.1957
- Rouge1: 0.2351
- Rouge2: 0.02
- Rougel: 0.1918
- Rougelsum: 0.1918
- Gen Len: 12.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 6    | 5.3947          | 0.1805 | 0.0    | 0.165  | 0.1658    | 13.0    |
| No log        | 2.0   | 12   | 5.2845          | 0.1923 | 0.0    | 0.1643 | 0.1645    | 13.9    |
| No log        | 3.0   | 18   | 5.2270          | 0.2429 | 0.0    | 0.2029 | 0.2036    | 13.3    |
| No log        | 4.0   | 24   | 5.1957          | 0.2351 | 0.02   | 0.1918 | 0.1918    | 12.5    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3