--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - ko - en widget: source_sentence: "대한민국의 수도는?" sentences: - "서울특별시는 한국이 정치,경제,문화 중심 도시이다." - "부산은 대한민국의 제2의 도시이자 최대의 해양 물류 도시이다." - "제주도는 대한민국에서 유명한 관광지이다" - "Seoul is the capital of Korea" - "울산광역시는 대한민국 남동부 해안에 있는 광역시이다" --- # moco-sentencedistilbertV2.0 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. - 이 모델은 [mdistilbertV1.1](https://huggingface.co./bongsoo/mdistilbertV1.1) 모델에 [moco-corpus 말뭉치](https://huggingface.co./datasets/bongsoo/moco-corpus)(MOCOMSYS 추출 3.2M 문장)로
sentencebert로 만든 후,추가적으로 STS Tearch-student 증류 학습 시켜 만든 모델 입니다. - **vocab: 164,314 개**(기존 mdistilbertV1.1 vocab(146,444 개)에 17,870개 vocab 추가)
**MLM 모델 : bongsoo/mdistilbertV2.0** ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence_transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bongsoo/moco-sentencedistilbertV2.0') embeddings = model.encode(sentences) print(embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(embeddings[0].reshape(1,-1), embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` #### 출력(Outputs) ``` [[ 9.7172342e-02 -3.3226651e-01 -7.7130608e-05 ... 1.3900512e-02 2.1072578e-01 -1.5386048e-01] [ 2.3313640e-02 -8.4675789e-02 -3.7715461e-06 ... 2.4005771e-02 -1.6602692e-01 -1.2729791e-01]] *cosine_score:0.3383665680885315 ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. - 평균 폴링(mean_pooling) 방식 사용. ([cls 폴링](https://huggingface.co./sentence-transformers/bert-base-nli-cls-token), [max 폴링](https://huggingface.co./sentence-transformers/bert-base-nli-max-tokens)) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/moco-sentencedistilbertV2.0') model = AutoModel.from_pretrained('bongsoo/moco-sentencedistilbertV2.0') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` #### 출력(Outputs) ``` Sentence embeddings: tensor([[ 9.7172e-02, -3.3227e-01, -7.7131e-05, ..., 1.3901e-02, 2.1073e-01, -1.5386e-01], [ 2.3314e-02, -8.4676e-02, -3.7715e-06, ..., 2.4006e-02, -1.6603e-01, -1.2730e-01]]) *cosine_score:0.3383665680885315 ``` ## Evaluation Results - 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함
한국어 : **korsts(1,379쌍문장)** 와 **klue-sts(519쌍문장)**
영어 : [stsb_multi_mt](https://huggingface.co./datasets/stsb_multi_mt)(1,376쌍문장) - 성능 지표는 **cosin.spearman** 측정하여 비교함. - 평가 측정 코드는 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test.ipynb) 참조 |모델 |korsts|klue-sts|korsts+klue-sts|stsb_multi_mt |:--------|------:|--------:|--------------:|------------:| |bongsoo/sentencedistilbertV1.2|0.819|0.858|0.630|0.837| |distiluse-base-multilingual-cased-v2|0.747|0.785|0.577|0.807| |paraphrase-multilingual-mpnet-base-v2|0.820|0.799|0.711|0.868| |bongsoo/moco-sentencedistilbertV2.0|0.812|0.847|0.627|0.837| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training(훈련 과정) The model was trained with the parameters: **1. MLM 훈련** - 입력 모델 : bongsoo/mdistilbertV1.1(*kowiki20220620(4.4M) 말뭉치 훈련된 distilbert-base-multilingual-cased) - 말뭉치 : nlp_corpus(3.2M) : MOCOMSYS 파일들 정제한 말뭉치 - HyperParameter : LearningRate : 5e-5, epochs: 8, batchsize: 32, max_token_len : 128 - 출력 모델 : mdistilbertV2.0 - 훈련시간 : 27h - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/distilbert/distilbert-MLM-Trainer-V1.2.ipynb) 참조 **2. STS 훈련** - distilbert를 sentencebert로 만듬. - 입력 모델 : mdistilbertV2.0 - 말뭉치 : korsts + kluestsV1.1 + stsb_multi_mt + mteb/sickr-sts (총:33,093) - HyperParameter : LearningRate : 2e-5, epochs: 200, batchsize: 32, max_token_len : 128 - 출력 모델 : sbert-mdistilbertV2.0 - 훈련시간 : 5h - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) 참조 **3.증류(distilation) 훈련** - 학생 모델 : sbert-mdistilbertV2.0 - 교사 모델 : paraphrase-multilingual-mpnet-base-v2 - 말뭉치 : en_ko_train.tsv(한국어-영어 사회과학분야 병렬 말뭉치 : 1.1M) - HyperParameter : LearningRate : 5e-5, epochs: 40, batchsize: 32, max_token_len : 128 - 출력 모델 : sbert-mdistilbertV2.0.2-distil - 훈련시간 : 11h - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton.ipynb) 참조 **4.STS 훈련** -sentencebert 모델을 sts 훈련시킴 - 입력 모델 : sbert-mdistilbertV2.0.2-distil - 말뭉치 : korsts + kluestsV1.1 + stsb_multi_mt + mteb/sickr-sts (총:33,093) - HyperParameter : LearningRate : 3e-5, epochs: 800, batchsize: 32, max_token_len : 128 - 출력 모델 : moco-sentencedistilbertV2.0 - 훈련시간 : 15h - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) 참조
모델 제작 과정에 대한 자세한 내용은 [여기](https://github.com/kobongsoo/BERT/tree/master)를 참조 하세요. **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1035 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Config**: ``` { "_name_or_path": "../../data11/model/sbert/sbert-mdistilbertV2.0.2-distil", "activation": "gelu", "architectures": [ "DistilBertModel" ], "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "output_past": true, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "tie_weights_": true, "torch_dtype": "float32", "transformers_version": "4.21.2", "vocab_size": 164314 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors bongsoo