--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # albert-small-kor-sbert-v1.1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. [albert-small-kor-v1](https://huggingface.co./bongsoo/albert-small-kor-v1) 모델을 sentencebert로 만든 모델. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bongsoo/albert-small-kor-sbert-v1.1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1') model = AutoModel.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results - 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함
한국어 : **korsts(1,379쌍문장)** 와 **klue-sts(519쌍문장)**
영어 : [stsb_multi_mt](https://huggingface.co./datasets/stsb_multi_mt)(1,376쌍문장) 와 [glue:stsb](https://huggingface.co./datasets/glue/viewer/stsb/validation) (1,500쌍문장) - 성능 지표는 **cosin.spearman** - 평가 측정 코드는 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test3.ipynb) 참조 - |모델 |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)| |:--------|------:|--------:|--------------:|------------:| |distiluse-base-multilingual-cased-v2 |0.7475 |0.7855 |0.8193 |0.8075| |paraphrase-multilingual-mpnet-base-v2 |0.8201 |0.7993 |0.8907 |0.8682| |bongsoo/albert-small-kor-sbert-v1 |0.8305 |0.8588 |0.8419 |0.7965| |bongsoo/klue-sbert-v1.0 |0.8529 |0.8952 |0.8813 |0.8469| |bongsoo/kpf-sbert-v1.1 |0.8750 |0.8900 |0.8863 |0.8554| |**bongsoo/albert-small-kor-sbert-v1.1** |0.8526 |0.8833 |0.8484 |0.8286| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training - [albert-small-kor-v1](https://huggingface.co./bongsoo/albert-small-kor-v1) 모델을 **sts(10)-distil(10) 훈련만 시킴** (**nli-sts추가 훈련시키면 정합도가 떨어짐**) - 교사모델은 [**kpf-sbert-v1.1**](https://huggingface.co./bongsoo/kpf-sbert-v1.1) 이용함. The model was trained with the parameters: **공통** - **do_lower_case=1, correct_bios=0, polling_mode=cls** **1.STS** - 말뭉치 : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (총:38,842) - Param : **lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 32, eval_batch: 64, max_token_len: 72** - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) 참조 **2.distilation** - 교사 모델 : [**kpf-sbert-v1.1**](https://huggingface.co./bongsoo/kpf-sbert-v1.1)(max_token_len:128) - 말뭉치 : news_talk_ko_en_train.tsv (한국어-영어 대화-뉴스 병렬 말뭉치 : 1.38M) - Param : **lr: 5e-5, epochs: 10, train_batch: 32, eval/test_batch: 64, max_token_len: 128(교사모델이 128이므로 맟춰줌)** - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton2.ipynb) 참조 ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors bongsoo