--- tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: prophetnet_summarization_pretrained results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.4982 --- # prophetnet_summarization_pretrained This model is a fine-tuned version of [microsoft/prophetnet-large-uncased](https://huggingface.co./microsoft/prophetnet-large-uncased) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3683 - Rouge1: 0.4982 - Rouge2: 0.2267 - Rougel: 0.2983 - Rougelsum: 0.2985 - Gen Len: 139.3831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | No log | 1.0 | 124 | 2.5178 | 0.4894 | 0.2223 | 0.2903 | 0.2903 | 139.8105 | | No log | 2.0 | 248 | 2.4170 | 0.4973 | 0.2279 | 0.2975 | 0.297 | 140.6492 | | No log | 3.0 | 372 | 2.3895 | 0.4964 | 0.2282 | 0.2984 | 0.2981 | 138.5323 | | No log | 4.0 | 496 | 2.3683 | 0.4982 | 0.2267 | 0.2983 | 0.2985 | 139.3831 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3