--- license: mit tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: bart_summarization_pretrained results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.5264 --- # bart_summarization_pretrained This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7402 - Rouge1: 0.5264 - Rouge2: 0.2745 - Rougel: 0.3432 - Rougelsum: 0.4049 - Gen Len: 131.0645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 1.7347 | 1.0 | 989 | 1.6263 | 0.5044 | 0.254 | 0.3219 | 0.3734 | 121.8306 | | 1.2029 | 2.0 | 1978 | 1.6037 | 0.5278 | 0.2723 | 0.3351 | 0.3977 | 136.4718 | | 0.8435 | 3.0 | 2967 | 1.6054 | 0.513 | 0.2661 | 0.3357 | 0.3957 | 129.1048 | | 0.6326 | 4.0 | 3956 | 1.7402 | 0.5264 | 0.2745 | 0.3432 | 0.4049 | 131.0645 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3