--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.8903225806451613 --- # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.0392 - Accuracy: 0.8903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.5092 | 0.6306 | | 3.9506 | 2.0 | 636 | 2.1778 | 0.8058 | | 3.9506 | 3.0 | 954 | 1.4469 | 0.8648 | | 2.0031 | 4.0 | 1272 | 1.1542 | 0.8797 | | 1.2402 | 5.0 | 1590 | 1.0392 | 0.8903 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.0.dev20231129 - Datasets 2.15.0 - Tokenizers 0.15.0