bobox commited on
Commit
aa1484c
·
verified ·
1 Parent(s): 554d487

n_layers_per_step = 1, last_layer_weight = 1 * model_layers,, prior_layers_weight= 0.05, kl_div_weight = 2, kl_temperature= 0.9,

Browse files
Files changed (2) hide show
  1. README.md +104 -104
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -89,109 +89,109 @@ model-index:
89
  type: unknown
90
  metrics:
91
  - type: cosine_accuracy
92
- value: 0.6605795351645035
93
  name: Cosine Accuracy
94
  - type: cosine_accuracy_threshold
95
- value: 0.688193678855896
96
  name: Cosine Accuracy Threshold
97
  - type: cosine_f1
98
- value: 0.7076101468624832
99
  name: Cosine F1
100
  - type: cosine_f1_threshold
101
- value: 0.5949093103408813
102
  name: Cosine F1 Threshold
103
  - type: cosine_precision
104
- value: 0.6053997923156802
105
  name: Cosine Precision
106
  - type: cosine_recall
107
- value: 0.8513434579439252
108
  name: Cosine Recall
109
  - type: cosine_ap
110
- value: 0.7024412828441404
111
  name: Cosine Ap
112
  - type: dot_accuracy
113
- value: 0.6320555387865983
114
  name: Dot Accuracy
115
  - type: dot_accuracy_threshold
116
- value: 152.9224853515625
117
  name: Dot Accuracy Threshold
118
  - type: dot_f1
119
- value: 0.6979234972677596
120
  name: Dot F1
121
  - type: dot_f1_threshold
122
- value: 110.95356750488281
123
  name: Dot F1 Threshold
124
  - type: dot_precision
125
- value: 0.5576318546978694
126
  name: Dot Precision
127
  - type: dot_recall
128
- value: 0.9325350467289719
129
  name: Dot Recall
130
  - type: dot_ap
131
- value: 0.6470829330129519
132
  name: Dot Ap
133
  - type: manhattan_accuracy
134
- value: 0.661334138243284
135
  name: Manhattan Accuracy
136
  - type: manhattan_accuracy_threshold
137
- value: 235.78744506835938
138
  name: Manhattan Accuracy Threshold
139
  - type: manhattan_f1
140
- value: 0.7093479035514908
141
  name: Manhattan F1
142
  - type: manhattan_f1_threshold
143
- value: 285.1435852050781
144
  name: Manhattan F1 Threshold
145
  - type: manhattan_precision
146
- value: 0.5977977977977978
147
  name: Manhattan Precision
148
  - type: manhattan_recall
149
- value: 0.8720794392523364
150
  name: Manhattan Recall
151
  - type: manhattan_ap
152
- value: 0.7110821827765943
153
  name: Manhattan Ap
154
  - type: euclidean_accuracy
155
- value: 0.6605795351645035
156
  name: Euclidean Accuracy
157
  - type: euclidean_accuracy_threshold
158
- value: 12.528359413146973
159
  name: Euclidean Accuracy Threshold
160
  - type: euclidean_f1
161
- value: 0.7051541483156768
162
  name: Euclidean F1
163
  - type: euclidean_f1_threshold
164
- value: 13.97222900390625
165
  name: Euclidean F1 Threshold
166
  - type: euclidean_precision
167
- value: 0.5951376331123167
168
  name: Euclidean Precision
169
  - type: euclidean_recall
170
- value: 0.865070093457944
171
  name: Euclidean Recall
172
  - type: euclidean_ap
173
- value: 0.7071775256273181
174
  name: Euclidean Ap
175
  - type: max_accuracy
176
- value: 0.661334138243284
177
  name: Max Accuracy
178
  - type: max_accuracy_threshold
179
- value: 235.78744506835938
180
  name: Max Accuracy Threshold
181
  - type: max_f1
182
- value: 0.7093479035514908
183
  name: Max F1
184
  - type: max_f1_threshold
185
- value: 285.1435852050781
186
  name: Max F1 Threshold
187
  - type: max_precision
188
- value: 0.6053997923156802
189
  name: Max Precision
190
  - type: max_recall
191
- value: 0.9325350467289719
192
  name: Max Recall
193
  - type: max_ap
194
- value: 0.7110821827765943
195
  name: Max Ap
196
  ---
197
 
@@ -293,41 +293,41 @@ You can finetune this model on your own dataset.
293
 
294
  | Metric | Value |
295
  |:-----------------------------|:-----------|
296
- | cosine_accuracy | 0.6606 |
297
- | cosine_accuracy_threshold | 0.6882 |
298
- | cosine_f1 | 0.7076 |
299
- | cosine_f1_threshold | 0.5949 |
300
- | cosine_precision | 0.6054 |
301
- | cosine_recall | 0.8513 |
302
- | cosine_ap | 0.7024 |
303
- | dot_accuracy | 0.6321 |
304
- | dot_accuracy_threshold | 152.9225 |
305
- | dot_f1 | 0.6979 |
306
- | dot_f1_threshold | 110.9536 |
307
- | dot_precision | 0.5576 |
308
- | dot_recall | 0.9325 |
309
- | dot_ap | 0.6471 |
310
- | manhattan_accuracy | 0.6613 |
311
- | manhattan_accuracy_threshold | 235.7874 |
312
- | manhattan_f1 | 0.7093 |
313
- | manhattan_f1_threshold | 285.1436 |
314
- | manhattan_precision | 0.5978 |
315
- | manhattan_recall | 0.8721 |
316
- | manhattan_ap | 0.7111 |
317
- | euclidean_accuracy | 0.6606 |
318
- | euclidean_accuracy_threshold | 12.5284 |
319
- | euclidean_f1 | 0.7052 |
320
- | euclidean_f1_threshold | 13.9722 |
321
- | euclidean_precision | 0.5951 |
322
- | euclidean_recall | 0.8651 |
323
- | euclidean_ap | 0.7072 |
324
- | max_accuracy | 0.6613 |
325
- | max_accuracy_threshold | 235.7874 |
326
- | max_f1 | 0.7093 |
327
- | max_f1_threshold | 285.1436 |
328
- | max_precision | 0.6054 |
329
- | max_recall | 0.9325 |
330
- | **max_ap** | **0.7111** |
331
 
332
  <!--
333
  ## Bias, Risks and Limitations
@@ -366,10 +366,10 @@ You can finetune this model on your own dataset.
366
  {
367
  "loss": "MultipleNegativesRankingLoss",
368
  "n_layers_per_step": 1,
369
- "last_layer_weight": 1.5,
370
- "prior_layers_weight": 1,
371
  "kl_div_weight": 2,
372
- "kl_temperature": 1
373
  }
374
  ```
375
 
@@ -396,10 +396,10 @@ You can finetune this model on your own dataset.
396
  {
397
  "loss": "MultipleNegativesRankingLoss",
398
  "n_layers_per_step": 1,
399
- "last_layer_weight": 1.5,
400
- "prior_layers_weight": 1,
401
  "kl_div_weight": 2,
402
- "kl_temperature": 1
403
  }
404
  ```
405
 
@@ -538,34 +538,34 @@ You can finetune this model on your own dataset.
538
  ### Training Logs
539
  | Epoch | Step | Training Loss | loss | max_ap |
540
  |:------:|:----:|:-------------:|:------:|:------:|
541
- | 0.1004 | 150 | 6.8384 | - | - |
542
- | 0.2001 | 299 | - | 6.3046 | 0.6155 |
543
- | 0.2008 | 300 | 5.9024 | - | - |
544
- | 0.3012 | 450 | 4.9822 | - | - |
545
- | 0.4003 | 598 | - | 5.1572 | 0.6595 |
546
- | 0.4016 | 600 | 4.3996 | - | - |
547
- | 0.5020 | 750 | 3.6015 | - | - |
548
- | 0.6004 | 897 | - | 4.0073 | 0.6904 |
549
- | 0.6024 | 900 | 3.0732 | - | - |
550
- | 0.7028 | 1050 | 2.7211 | - | - |
551
- | 0.8005 | 1196 | - | 3.3433 | 0.7034 |
552
- | 0.8032 | 1200 | 2.4196 | - | - |
553
- | 0.9036 | 1350 | 2.2256 | - | - |
554
- | 1.0007 | 1495 | - | 2.9401 | 0.7079 |
555
- | 1.0040 | 1500 | 2.0015 | - | - |
556
- | 1.1044 | 1650 | 1.9828 | - | - |
557
- | 1.2008 | 1794 | - | 2.8339 | 0.7104 |
558
- | 1.2048 | 1800 | 1.8243 | - | - |
559
- | 1.3052 | 1950 | 1.7393 | - | - |
560
- | 1.4009 | 2093 | - | 2.5906 | 0.7120 |
561
- | 1.4056 | 2100 | 1.7702 | - | - |
562
- | 1.5060 | 2250 | 1.615 | - | - |
563
- | 1.6011 | 2392 | - | 2.5455 | 0.7111 |
564
- | 1.6064 | 2400 | 1.6249 | - | - |
565
- | 1.7068 | 2550 | 1.5804 | - | - |
566
- | 1.8012 | 2691 | - | 2.4747 | 0.7111 |
567
- | 1.8072 | 2700 | 1.5935 | - | - |
568
- | 1.9076 | 2850 | 1.5088 | - | - |
569
 
570
 
571
  ### Framework Versions
 
89
  type: unknown
90
  metrics:
91
  - type: cosine_accuracy
92
+ value: 0.6651071536371869
93
  name: Cosine Accuracy
94
  - type: cosine_accuracy_threshold
95
+ value: 0.687929630279541
96
  name: Cosine Accuracy Threshold
97
  - type: cosine_f1
98
+ value: 0.7077349458301839
99
  name: Cosine F1
100
  - type: cosine_f1_threshold
101
+ value: 0.6304811239242554
102
  name: Cosine F1 Threshold
103
  - type: cosine_precision
104
+ value: 0.6222862206468763
105
  name: Cosine Precision
106
  - type: cosine_recall
107
+ value: 0.8203855140186916
108
  name: Cosine Recall
109
  - type: cosine_ap
110
+ value: 0.7058220689813709
111
  name: Cosine Ap
112
  - type: dot_accuracy
113
+ value: 0.6313009357078176
114
  name: Dot Accuracy
115
  - type: dot_accuracy_threshold
116
+ value: 135.98495483398438
117
  name: Dot Accuracy Threshold
118
  - type: dot_f1
119
+ value: 0.6997334569475027
120
  name: Dot F1
121
  - type: dot_f1_threshold
122
+ value: 115.54609680175781
123
  name: Dot F1 Threshold
124
  - type: dot_precision
125
+ value: 0.5800192122958694
126
  name: Dot Precision
127
  - type: dot_recall
128
+ value: 0.8817172897196262
129
  name: Dot Recall
130
  - type: dot_ap
131
+ value: 0.6554755795160082
132
  name: Dot Ap
133
  - type: manhattan_accuracy
134
+ value: 0.6708421370359191
135
  name: Manhattan Accuracy
136
  - type: manhattan_accuracy_threshold
137
+ value: 219.32388305664062
138
  name: Manhattan Accuracy Threshold
139
  - type: manhattan_f1
140
+ value: 0.7119951778179626
141
  name: Manhattan F1
142
  - type: manhattan_f1_threshold
143
+ value: 262.314697265625
144
  name: Manhattan F1 Threshold
145
  - type: manhattan_precision
146
+ value: 0.6062410182714022
147
  name: Manhattan Precision
148
  - type: manhattan_recall
149
+ value: 0.8624415887850467
150
  name: Manhattan Recall
151
  - type: manhattan_ap
152
+ value: 0.7135236162968746
153
  name: Manhattan Ap
154
  - type: euclidean_accuracy
155
+ value: 0.6652580742529429
156
  name: Euclidean Accuracy
157
  - type: euclidean_accuracy_threshold
158
+ value: 11.506816864013672
159
  name: Euclidean Accuracy Threshold
160
  - type: euclidean_f1
161
+ value: 0.7080090384132564
162
  name: Euclidean F1
163
  - type: euclidean_f1_threshold
164
+ value: 12.478536605834961
165
  name: Euclidean F1 Threshold
166
  - type: euclidean_precision
167
+ value: 0.6208718626155878
168
  name: Euclidean Precision
169
  - type: euclidean_recall
170
+ value: 0.8235981308411215
171
  name: Euclidean Recall
172
  - type: euclidean_ap
173
+ value: 0.7090362803652147
174
  name: Euclidean Ap
175
  - type: max_accuracy
176
+ value: 0.6708421370359191
177
  name: Max Accuracy
178
  - type: max_accuracy_threshold
179
+ value: 219.32388305664062
180
  name: Max Accuracy Threshold
181
  - type: max_f1
182
+ value: 0.7119951778179626
183
  name: Max F1
184
  - type: max_f1_threshold
185
+ value: 262.314697265625
186
  name: Max F1 Threshold
187
  - type: max_precision
188
+ value: 0.6222862206468763
189
  name: Max Precision
190
  - type: max_recall
191
+ value: 0.8817172897196262
192
  name: Max Recall
193
  - type: max_ap
194
+ value: 0.7135236162968746
195
  name: Max Ap
196
  ---
197
 
 
293
 
294
  | Metric | Value |
295
  |:-----------------------------|:-----------|
296
+ | cosine_accuracy | 0.6651 |
297
+ | cosine_accuracy_threshold | 0.6879 |
298
+ | cosine_f1 | 0.7077 |
299
+ | cosine_f1_threshold | 0.6305 |
300
+ | cosine_precision | 0.6223 |
301
+ | cosine_recall | 0.8204 |
302
+ | cosine_ap | 0.7058 |
303
+ | dot_accuracy | 0.6313 |
304
+ | dot_accuracy_threshold | 135.985 |
305
+ | dot_f1 | 0.6997 |
306
+ | dot_f1_threshold | 115.5461 |
307
+ | dot_precision | 0.58 |
308
+ | dot_recall | 0.8817 |
309
+ | dot_ap | 0.6555 |
310
+ | manhattan_accuracy | 0.6708 |
311
+ | manhattan_accuracy_threshold | 219.3239 |
312
+ | manhattan_f1 | 0.712 |
313
+ | manhattan_f1_threshold | 262.3147 |
314
+ | manhattan_precision | 0.6062 |
315
+ | manhattan_recall | 0.8624 |
316
+ | manhattan_ap | 0.7135 |
317
+ | euclidean_accuracy | 0.6653 |
318
+ | euclidean_accuracy_threshold | 11.5068 |
319
+ | euclidean_f1 | 0.708 |
320
+ | euclidean_f1_threshold | 12.4785 |
321
+ | euclidean_precision | 0.6209 |
322
+ | euclidean_recall | 0.8236 |
323
+ | euclidean_ap | 0.709 |
324
+ | max_accuracy | 0.6708 |
325
+ | max_accuracy_threshold | 219.3239 |
326
+ | max_f1 | 0.712 |
327
+ | max_f1_threshold | 262.3147 |
328
+ | max_precision | 0.6223 |
329
+ | max_recall | 0.8817 |
330
+ | **max_ap** | **0.7135** |
331
 
332
  <!--
333
  ## Bias, Risks and Limitations
 
366
  {
367
  "loss": "MultipleNegativesRankingLoss",
368
  "n_layers_per_step": 1,
369
+ "last_layer_weight": 1,
370
+ "prior_layers_weight": 0.05,
371
  "kl_div_weight": 2,
372
+ "kl_temperature": 0.9
373
  }
374
  ```
375
 
 
396
  {
397
  "loss": "MultipleNegativesRankingLoss",
398
  "n_layers_per_step": 1,
399
+ "last_layer_weight": 1,
400
+ "prior_layers_weight": 0.05,
401
  "kl_div_weight": 2,
402
+ "kl_temperature": 0.9
403
  }
404
  ```
405
 
 
538
  ### Training Logs
539
  | Epoch | Step | Training Loss | loss | max_ap |
540
  |:------:|:----:|:-------------:|:------:|:------:|
541
+ | 0.1004 | 150 | 4.5827 | - | - |
542
+ | 0.2001 | 299 | - | 3.5735 | 0.6133 |
543
+ | 0.2008 | 300 | 3.5451 | - | - |
544
+ | 0.3012 | 450 | 2.9066 | - | - |
545
+ | 0.4003 | 598 | - | 2.8785 | 0.6561 |
546
+ | 0.4016 | 600 | 2.5141 | - | - |
547
+ | 0.5020 | 750 | 2.0248 | - | - |
548
+ | 0.6004 | 897 | - | 2.1300 | 0.6917 |
549
+ | 0.6024 | 900 | 1.6782 | - | - |
550
+ | 0.7028 | 1050 | 1.4187 | - | - |
551
+ | 0.8005 | 1196 | - | 1.7111 | 0.7051 |
552
+ | 0.8032 | 1200 | 1.2446 | - | - |
553
+ | 0.9036 | 1350 | 1.1078 | - | - |
554
+ | 1.0007 | 1495 | - | 1.4859 | 0.7108 |
555
+ | 1.0040 | 1500 | 0.9827 | - | - |
556
+ | 1.1044 | 1650 | 0.9335 | - | - |
557
+ | 1.2008 | 1794 | - | 1.3516 | 0.7121 |
558
+ | 1.2048 | 1800 | 0.8595 | - | - |
559
+ | 1.3052 | 1950 | 0.8362 | - | - |
560
+ | 1.4009 | 2093 | - | 1.2659 | 0.7147 |
561
+ | 1.4056 | 2100 | 0.8167 | - | - |
562
+ | 1.5060 | 2250 | 0.7695 | - | - |
563
+ | 1.6011 | 2392 | - | 1.2218 | 0.7135 |
564
+ | 1.6064 | 2400 | 0.7544 | - | - |
565
+ | 1.7068 | 2550 | 0.7625 | - | - |
566
+ | 1.8012 | 2691 | - | 1.2073 | 0.7135 |
567
+ | 1.8072 | 2700 | 0.7366 | - | - |
568
+ | 1.9076 | 2850 | 0.7348 | - | - |
569
 
570
 
571
  ### Framework Versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b93c9d7c3dd14655bcd8b8f7526e0c331aeb9ead053243ae631a7970785cfee
3
  size 565251810
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d987747af13557ed9ce9d67bddcbcc93242a3bea2f8ca559470e5c3ae052aa72
3
  size 565251810