--- language: en license: mit tags: - conversational-ai - question-answering - nlp - transformers - context-aware datasets: - squad metrics: - exact_match - f1_score model-index: - name: Conversational AI Base Model results: - task: type: question-answering dataset: name: squad type: question-answering metrics: - type: exact_match value: 0.75 - type: f1_score value: 0.85 --- # Conversational AI Base Model

Hugging Face

## 🤖 Model Overview A sophisticated, context-aware conversational AI model built on the DistilBERT architecture, designed for advanced natural language understanding and generation. ### 🌟 Key Features - **Advanced Response Generation** - Multi-strategy response mechanisms - Context-aware conversation tracking - Intelligent fallback responses - **Flexible Architecture** - Built on DistilBERT base model - Supports TensorFlow and PyTorch - Lightweight and efficient - **Robust Processing** - 512-token context window - Dynamic model loading - Error handling and recovery ## 🚀 Quick Start ### Installation ```bash pip install transformers torch ``` ### Usage Example ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer # Load model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained('bniladridas/conversational-ai-base-model') tokenizer = AutoTokenizer.from_pretrained('bniladridas/conversational-ai-base-model') ``` ## 🧠 Model Capabilities - Semantic understanding of context and questions - Ability to extract precise answers - Multiple response generation strategies - Fallback mechanisms for complex queries ## 📊 Performance - Trained on Stanford Question Answering Dataset (SQuAD) - Exact Match: 75% - F1 Score: 85% ## ⚠️ Limitations - Primarily trained on English text - Requires domain-specific fine-tuning - Performance varies by use case ## 🔍 Technical Details - **Base Model:** DistilBERT - **Variant:** Distilled for question-answering - **Maximum Sequence Length:** 512 tokens - **Supported Backends:** TensorFlow, PyTorch ## 🤝 Ethical Considerations - Designed with fairness in mind - Transparent about model capabilities - Ongoing work to reduce potential biases ## 📚 Citation ```bibtex @misc{conversational-ai-model, title={Conversational AI Base Model}, author={Niladri Das}, year={2025}, url={https://huggingface.co./bniladridas/conversational-ai-base-model} } ``` ## 📞 Contact - GitHub: [bniladridas](https://github.com/bniladridas) - Hugging Face: [@bniladridas](https://huggingface.co./bniladridas) --- *Last Updated: February 2025*