--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9676750216076059 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1772 - Accuracy: 0.9677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7629 | 1.0 | 406 | 0.3326 | 0.9312 | | 0.8118 | 2.0 | 813 | 0.2958 | 0.9450 | | 0.7189 | 3.0 | 1220 | 0.2502 | 0.9516 | | 0.7529 | 4.0 | 1627 | 0.2301 | 0.9566 | | 0.6746 | 5.0 | 2033 | 0.2146 | 0.9575 | | 0.546 | 6.0 | 2440 | 0.2027 | 0.9609 | | 0.5983 | 7.0 | 2847 | 0.1919 | 0.9640 | | 0.5653 | 8.0 | 3254 | 0.1862 | 0.9653 | | 0.5361 | 9.0 | 3660 | 0.1815 | 0.9659 | | 0.5017 | 9.98 | 4060 | 0.1772 | 0.9677 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0