Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.96 +/- 20.56
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45d826ed30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45d826edc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45d826ee50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45d826eee0>", "_build": "<function ActorCriticPolicy._build at 0x7f45d826ef70>", "forward": "<function ActorCriticPolicy.forward at 0x7f45d81f4040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45d81f40d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45d81f4160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45d81f41f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45d81f4280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45d81f4310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45d826d3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671811655511411501, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpojrxsZ6u7u1S2uxY3UT19iQy9whErPgAAgD8AAIA/M0SjvPYEQbou5Wy81TWDPOXVtLoGSmU9AACAPwAAgD+aISS8SCOFuiqWRbkCZkm0uxmbuvVfZjgAAIA/AACAP7PEJb1cNzK6E/hYufEUv7StEe6685x9OAAAgD8AAIA/GrJdvUqfkD8GPkO+96TevoaBW73Dkt29AAAAAAAAAAAz88e8CQ16Pypy0j3vM5u+Vqo8vU49tT0AAAAAAAAAAGbDMr0UNJe6pKaxO5yLOTVnv7y6UkMnNAAAgD8AAIA/ZsEIPfaoP7pdKTW6kXibNEH1D7trc1E5AACAPwAAgD9mpvA7FOCTuldtqTsXiwg2grUluoFsBjUAAIA/AACAP2bhmz2uQYS6WE9BuyT5DrYloB66BVphOgAAgD8AAIA/M1/0PZRDZD4TjjS+csB7vitULjwTdRm7AAAAAAAAAABNsRQ9j6opuiDEXjsrhek3sKe6OzUbHboAAIA/AACAPzPRXT7zSdc+UvgLvubNRL53wBE9s0ZAvQAAAAAAAAAAmuwTvY9SV7pFBHk7JCeiOJ1KH7u85Ra6AACAPwAAgD/NjHg9XEdwugVuHLpeJEq2OWjoOg79NTkAAIA/AACAP3MDoz3hqIS6kPjOuxSeWjZ/2GO67hHFtQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7+TTY1vLX0CUhpRSlIwBbJRN6AOMAXSUR0CQtiJnQID6dX2UKGgGaAloD0MIB3k9mBTaXkCUhpRSlGgVTegDaBZHQJC2qNvOyFB1fZQoaAZoCWgPQwj85ChAFE1fQJSGlFKUaBVN6ANoFkdAkLyMjNY8uHV9lChoBmgJaA9DCHUiwVSzHGFAlIaUUpRoFU3oA2gWR0CQxXyrgflqdX2UKGgGaAloD0MIUP7uHTXKYkCUhpRSlGgVTegDaBZHQJDIyv2Xb/R1fZQoaAZoCWgPQwh3S3LAri1gQJSGlFKUaBVN6ANoFkdAkNE0UfxMFnV9lChoBmgJaA9DCGWoiql02WJAlIaUUpRoFU3oA2gWR0CQ2QPdEb5udX2UKGgGaAloD0MIKzOl9bc+S0CUhpRSlGgVTQUBaBZHQJDaPYlIEr51fZQoaAZoCWgPQwgKavgWVmhiQJSGlFKUaBVN6ANoFkdAkNpnFPznR3V9lChoBmgJaA9DCC4cCMmCzGBAlIaUUpRoFU3oA2gWR0CQ4C67ulXSdX2UKGgGaAloD0MIsWmlEMjoZUCUhpRSlGgVTegDaBZHQJDjR1ie/Yd1fZQoaAZoCWgPQwgJFoczPzNkQJSGlFKUaBVN6ANoFkdAkObx6OYIB3V9lChoBmgJaA9DCHEd44qL8F5AlIaUUpRoFU3oA2gWR0CQ6OPHktEodX2UKGgGaAloD0MIDwwgfCi/YUCUhpRSlGgVTegDaBZHQJDqqGj9GZx1fZQoaAZoCWgPQwg9SE+RQ41kQJSGlFKUaBVN6ANoFkdAkP+WRigCfnV9lChoBmgJaA9DCFD9g0gGi2RAlIaUUpRoFU3oA2gWR0CRBAmozeoDdX2UKGgGaAloD0MIWYrkKwGLY0CUhpRSlGgVTegDaBZHQJEJfcuanaZ1fZQoaAZoCWgPQwhuisdFtdRhQJSGlFKUaBVN6ANoFkdAkQoXbuc+aHV9lChoBmgJaA9DCMB5ceIr2WNAlIaUUpRoFU3oA2gWR0CRCp+qioKldX2UKGgGaAloD0MItp4hHDOwYECUhpRSlGgVTegDaBZHQJEQknx8UmF1fZQoaAZoCWgPQwi6aMh4FCdiQJSGlFKUaBVN6ANoFkdAkRxjnaFmF3V9lChoBmgJaA9DCIjyBS2kfmNAlIaUUpRoFU3oA2gWR0CRJIXNke6qdX2UKGgGaAloD0MIaJPDJ53fW0CUhpRSlGgVTegDaBZHQJEr+iyprDZ1fZQoaAZoCWgPQwihZd0/FlxdQJSGlFKUaBVN6ANoFkdAkS07VFx4p3V9lChoBmgJaA9DCFZETfT5Cl9AlIaUUpRoFU3oA2gWR0CRLWMAWBSUdX2UKGgGaAloD0MI0xVsI55s7D+UhpRSlGgVTR0BaBZHQJEx/zbvgFZ1fZQoaAZoCWgPQwjR6A5iZ7NiQJSGlFKUaBVN6ANoFkdAkTMqwY+B6XV9lChoBmgJaA9DCGrZWl8kR2RAlIaUUpRoFU3oA2gWR0CRNjE1l5GCdX2UKGgGaAloD0MIHXbfMTwjZECUhpRSlGgVTegDaBZHQJE5uSfUWmB1fZQoaAZoCWgPQwhYPPVIg8JfQJSGlFKUaBVN6ANoFkdAkTurYbsF+3V9lChoBmgJaA9DCNxifm5o5mNAlIaUUpRoFU3oA2gWR0CRPYr433pOdX2UKGgGaAloD0MINPPkmgLpOkCUhpRSlGgVS/toFkdAkT41A/s3Q3V9lChoBmgJaA9DCA1xrIvbfGFAlIaUUpRoFU3oA2gWR0CRUp2OAAhjdX2UKGgGaAloD0MIK08g7BSYZUCUhpRSlGgVTegDaBZHQJFXTjcVQAN1fZQoaAZoCWgPQwhmTMEaZ4ZgQJSGlFKUaBVN6ANoFkdAkV0rkn1FpnV9lChoBmgJaA9DCGKE8GhjQGJAlIaUUpRoFU3oA2gWR0CRXcwK0D2bdX2UKGgGaAloD0MIDHVY4RbWYECUhpRSlGgVTegDaBZHQJFeZ6po9LZ1fZQoaAZoCWgPQwgTY5l+iYBfQJSGlFKUaBVN6ANoFkdAkWUNKAavR3V9lChoBmgJaA9DCMzR4/e2nmFAlIaUUpRoFU3oA2gWR0CRfEaVlf7adX2UKGgGaAloD0MIZhU2A1yaTUCUhpRSlGgVTSUBaBZHQJF9pJvo/zJ1fZQoaAZoCWgPQwiyR6gZUkVdQJSGlFKUaBVN6ANoFkdAkYPpBcAzYXV9lChoBmgJaA9DCPiKbr0mY2NAlIaUUpRoFU3oA2gWR0CRhRsEJSiudX2UKGgGaAloD0MIJ9pVSHmTYECUhpRSlGgVTegDaBZHQJGJ+ii7Ci11fZQoaAZoCWgPQwjs+3CQkOlkQJSGlFKUaBVN6ANoFkdAkYsVMh5gPXV9lChoBmgJaA9DCBX/d0QFPGNAlIaUUpRoFU3oA2gWR0CRjgD+BH09dX2UKGgGaAloD0MIkUdwI+XGYkCUhpRSlGgVTegDaBZHQJGRw5tFa0R1fZQoaAZoCWgPQwi5NH7hlclhQJSGlFKUaBVN6ANoFkdAkZPMpXp4bHV9lChoBmgJaA9DCKjlB65yVGBAlIaUUpRoFU3oA2gWR0CRlaX7Lt/ndX2UKGgGaAloD0MILscrEL3RYUCUhpRSlGgVTegDaBZHQJGWR31SOzZ1fZQoaAZoCWgPQwiP/wJBgLVfQJSGlFKUaBVN6ANoFkdAkZ3nU2DQJHV9lChoBmgJaA9DCFn3j4Xou2VAlIaUUpRoFU3oA2gWR0CRr7Kg7HQydX2UKGgGaAloD0MIDvPlBdgAZUCUhpRSlGgVTegDaBZHQJG1WMJhOQB1fZQoaAZoCWgPQwhod0gxQABhQJSGlFKUaBVN6ANoFkdAkbX59NN8E3V9lChoBmgJaA9DCIRnQpPEemRAlIaUUpRoFU3oA2gWR0CRto9GZuyedX2UKGgGaAloD0MI3dJqSNwfcUCUhpRSlGgVTa4BaBZHQJHCKLEUCaJ1fZQoaAZoCWgPQwiY+nlTkdogQJSGlFKUaBVL62gWR0CRyNHtnf2sdX2UKGgGaAloD0MI95Fbk+7OZkCUhpRSlGgVTegDaBZHQJHUEoMKCxx1fZQoaAZoCWgPQwiWCiqq/rRlQJSGlFKUaBVN6ANoFkdAkdV33L3bmHV9lChoBmgJaA9DCHKG4o63p2VAlIaUUpRoFU3oA2gWR0CR26K1XvH+dX2UKGgGaAloD0MIwqIiTqfdZECUhpRSlGgVTegDaBZHQJHc4pUgjhV1fZQoaAZoCWgPQwjqQNZTK5RgQJSGlFKUaBVN6ANoFkdAkeIfiT+vQnV9lChoBmgJaA9DCCRCI9i4TWBAlIaUUpRoFU3oA2gWR0CR40b6xgRcdX2UKGgGaAloD0MIbOo8Kn4qY0CUhpRSlGgVTegDaBZHQJHmazLOiWV1fZQoaAZoCWgPQwgqkUQvI0tjQJSGlFKUaBVN6ANoFkdAkeosyi22HHV9lChoBmgJaA9DCP34S4v6g2NAlIaUUpRoFU3oA2gWR0CR7DAY51eTdX2UKGgGaAloD0MIEJGadrFIZUCUhpRSlGgVTegDaBZHQJHuxYgaFVV1fZQoaAZoCWgPQwjF5uPa0GRhQJSGlFKUaBVN6ANoFkdAkfcnF1jiGXV9lChoBmgJaA9DCHk+A+rN2GRAlIaUUpRoFU3oA2gWR0CSCEWK/EfldX2UKGgGaAloD0MITz3S4Lb7X0CUhpRSlGgVTegDaBZHQJINwGB4D9x1fZQoaAZoCWgPQwhksrj/SIplQJSGlFKUaBVN6ANoFkdAkg5XAM2FWXV9lChoBmgJaA9DCM+idypgmGVAlIaUUpRoFU3oA2gWR0CSGlev6j33dX2UKGgGaAloD0MIFFlrKLWMY0CUhpRSlGgVTegDaBZHQJIg83wTdtV1fZQoaAZoCWgPQwjQ8GYNXjxjQJSGlFKUaBVN6ANoFkdAkivTB68g6nV9lChoBmgJaA9DCHF1AMRdX1xAlIaUUpRoFU3oA2gWR0CSLRhllK9PdX2UKGgGaAloD0MIvvp46LsrZECUhpRSlGgVTegDaBZHQJIy8PJ7sv91fZQoaAZoCWgPQwg5fqg04jpmQJSGlFKUaBVN6ANoFkdAkjQj4DcM3XV9lChoBmgJaA9DCH11VaCW9GNAlIaUUpRoFU3oA2gWR0CSOKx8D0UXdX2UKGgGaAloD0MIe8GnOXm+YUCUhpRSlGgVTegDaBZHQJI5qP+4smR1fZQoaAZoCWgPQwgRUrezLwBlQJSGlFKUaBVN6ANoFkdAkjxkxdpqRHV9lChoBmgJaA9DCFr2JLA5+2RAlIaUUpRoFU3oA2gWR0CSP4mqYJE6dX2UKGgGaAloD0MIr9FyoAdTYECUhpRSlGgVTegDaBZHQJJBPSc9W6t1fZQoaAZoCWgPQwg/GePD7LRhQJSGlFKUaBVN6ANoFkdAkkNhnzxwynV9lChoBmgJaA9DCE/ltKdkhWJAlIaUUpRoFU3oA2gWR0CSSi1ZkkKNdX2UKGgGaAloD0MIUduGURA7ZECUhpRSlGgVTegDaBZHQJJN/dl/Yrd1fZQoaAZoCWgPQwgCEeLK2ShkQJSGlFKUaBVN6ANoFkdAkl7WHLzPKXV9lChoBmgJaA9DCApMp3Ub3WNAlIaUUpRoFU3oA2gWR0CSX12kSElFdX2UKGgGaAloD0MIOdBDbZtdZUCUhpRSlGgVTegDaBZHQJJqaLbYbsF1fZQoaAZoCWgPQwhcVfZdEfhkQJSGlFKUaBVN6ANoFkdAknCytmtheHV9lChoBmgJaA9DCFOynITShmJAlIaUUpRoFU3oA2gWR0CSe24Ia99MdX2UKGgGaAloD0MIt+wQ/zDMY0CUhpRSlGgVTegDaBZHQJJ80cLjPv91fZQoaAZoCWgPQwiDvvT2Z5JkQJSGlFKUaBVN6ANoFkdAkoLKcmShanV9lChoBmgJaA9DCBoxs8/jCmVAlIaUUpRoFU3oA2gWR0CSg/7cfvF4dX2UKGgGaAloD0MIP8kdNpEAZUCUhpRSlGgVTegDaBZHQJKJC704BFN1fZQoaAZoCWgPQwhv8IXJVHFkQJSGlFKUaBVN6ANoFkdAkoo/lMh5gXV9lChoBmgJaA9DCB+duvLZhmNAlIaUUpRoFU3oA2gWR0CSjYde6ZpjdX2UKGgGaAloD0MII/d0dceCY0CUhpRSlGgVTegDaBZHQJKRTcfvF3p1fZQoaAZoCWgPQwh/FHXmHtpgQJSGlFKUaBVN6ANoFkdAkpNNFSbYsnV9lChoBmgJaA9DCLUX0XZME1tAlIaUUpRoFU3oA2gWR0CSlb+3H7xedX2UKGgGaAloD0MIvEG0VjTmYECUhpRSlGgVTegDaBZHQJKdPOiWVu91fZQoaAZoCWgPQwhWEANde01iQJSGlFKUaBVN6ANoFkdAkqGyqMm4RXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd463d58160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd463d581f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd463d58280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd463d58310>", "_build": "<function ActorCriticPolicy._build at 0x7fd463d583a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd463d58430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd463d584c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd463d58550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd463d585e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd463d58670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd463d58700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd463d4ebd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671848102435906279, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNzEj7TRu4+G+UZvvrVyb4Ntso92gkkvgAAAAAAAAAAzTzqOnGWPbs4yc86QD/APBEBirylQqM9AACAPwAAgD+aFlw+ynp0P4CS9j0XiQm/I8qMPh1IBL4AAAAAAAAAAFM9tD4Gblc/XfiaPi3JEL8nOOw+0sALvQAAAAAAAAAAAFKevClgYroqlso5ofOVNbQOczqFO+64AACAPwAAgD/N3Do72A8LPzpyljxN/76+f5igPD5tkz0AAAAAAAAAAJqc+jwKSym77gEyO7wwgzzGbzC8s21jPQAAgD8AAIA/gO4hPeyZ9blIJte7wrCntVLjSrqsHxw1AACAPwAAAACz0ZI9XMtAujWf7rNUPiWtVJN3ukaEsDMAAIA/AACAP838pzqckRE+RLG3PX9SmL7t47Y9PonGvAAAAAAAAAAAs8fHPZTb5T0YW7e980GkvgsyNj2H48O8AAAAAAAAAAAK3Ze+uUcsP4pixz5fExa/r3PEvi8BqD4AAAAAAAAAAGaOyLyu0YG69a9oM1pTNC9c32C5q6TEswAAgD8AAIA/s3xdPfb4Rrp+qFu8rGI3NkVKoLvDDqS1AAAAAAAAAADAM7K93IRfPn0aXT68jZ6+e4mqPZKSID0AAAAAAAAAAIBekz1cAzO6yhw6M6pZerBIE7Q7HEnDswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKVsk7caCc0CUhpRSlIwBbJRL6YwBdJRHQJp6qV5a/yp1fZQoaAZoCWgPQwhlOJ7PgCJ0QJSGlFKUaBVLzGgWR0CaeqqN6w+udX2UKGgGaAloD0MIfJ3UlyU6cUCUhpRSlGgVS+loFkdAmnuMIiTt9nV9lChoBmgJaA9DCKYnLPHAj3BAlIaUUpRoFUvsaBZHQJp7xt52Qnx1fZQoaAZoCWgPQwi8W1mi87lyQJSGlFKUaBVL+2gWR0Cae89mpVCHdX2UKGgGaAloD0MIxf8dUaEvcECUhpRSlGgVS9VoFkdAmnwltoBaLXV9lChoBmgJaA9DCKIm+nzUY3FAlIaUUpRoFU0CAWgWR0CafJX5FgDzdX2UKGgGaAloD0MIRE5fzxfGcECUhpRSlGgVS9xoFkdAmnybsWweNnV9lChoBmgJaA9DCCgoRSu3g3JAlIaUUpRoFU0oAWgWR0CafQsyi22HdX2UKGgGaAloD0MIN4sXC0NHc0CUhpRSlGgVS+JoFkdAmn2m7z06HXV9lChoBmgJaA9DCFjFG5lH9E9AlIaUUpRoFUumaBZHQJp95sdkrgB1fZQoaAZoCWgPQwgV4pF4Oa9yQJSGlFKUaBVNBgFoFkdAmn4i2H+IdnV9lChoBmgJaA9DCBDqIoWyC3JAlIaUUpRoFUv3aBZHQJp+UK7ZnL91fZQoaAZoCWgPQwg4LA38KGxzQJSGlFKUaBVL5WgWR0CafoE12q1gdX2UKGgGaAloD0MIU+dR8X9ycECUhpRSlGgVS8loFkdAmn6uhK15SnV9lChoBmgJaA9DCLFSQUXVF3JAlIaUUpRoFUvwaBZHQJp/f544ZMt1fZQoaAZoCWgPQwjJrrSM1F1yQJSGlFKUaBVLwWgWR0Caf+zH0btJdX2UKGgGaAloD0MIM8Lbg9ApcUCUhpRSlGgVS/ZoFkdAmn//XCj1w3V9lChoBmgJaA9DCGR1q+ckcnNAlIaUUpRoFUvgaBZHQJqAnOJLuhN1fZQoaAZoCWgPQwhv9gfKbTZyQJSGlFKUaBVL4mgWR0CagP0dBBzFdX2UKGgGaAloD0MIsqAwKFMfdECUhpRSlGgVTQUBaBZHQJqBL9ETg2t1fZQoaAZoCWgPQwggm+RHvGJxQJSGlFKUaBVL2WgWR0CagUKEnLJTdX2UKGgGaAloD0MIkIKnkKvYcECUhpRSlGgVTUoBaBZHQJqB0x8D0UZ1fZQoaAZoCWgPQwgQyvs4GslvQJSGlFKUaBVL5GgWR0CaggRO1v2odX2UKGgGaAloD0MI0xQBTq/McUCUhpRSlGgVTQgBaBZHQJqCT50r9VF1fZQoaAZoCWgPQwg9DoP5q4JyQJSGlFKUaBVL3WgWR0Cagn0PpY9xdX2UKGgGaAloD0MITS1b68t4ckCUhpRSlGgVS7toFkdAmoKQMpgCwXV9lChoBmgJaA9DCEzGMZI9rXFAlIaUUpRoFUvMaBZHQJqCjXPJJXh1fZQoaAZoCWgPQwiNJEG4gmZzQJSGlFKUaBVL8WgWR0Cagwvg3tKJdX2UKGgGaAloD0MIWikEcsmTcECUhpRSlGgVS/hoFkdAmoOPMr3CbnV9lChoBmgJaA9DCKaZ7nXSIHRAlIaUUpRoFUv/aBZHQJqEEv24/eN1fZQoaAZoCWgPQwiCb5o++2hxQJSGlFKUaBVL2WgWR0CahI6f8MuwdX2UKGgGaAloD0MIXmbYKGucckCUhpRSlGgVS+VoFkdAmpezZlFtsXV9lChoBmgJaA9DCEd3EDtTzk5AlIaUUpRoFUuTaBZHQJqXvh5xBE91fZQoaAZoCWgPQwhPstXl1IpyQJSGlFKUaBVLzGgWR0Cal83mV7hOdX2UKGgGaAloD0MIRSxi2KFDcUCUhpRSlGgVTQoBaBZHQJqYCxC6Ymd1fZQoaAZoCWgPQwj9iF+xBhNyQJSGlFKUaBVL3mgWR0CamIbbUPQOdX2UKGgGaAloD0MIwR4TKQ1QcUCUhpRSlGgVS+JoFkdAmpjQCjk+5nV9lChoBmgJaA9DCJT43Al27W9AlIaUUpRoFUvnaBZHQJqY+0PYnOV1fZQoaAZoCWgPQwgvFLAdTGVzQJSGlFKUaBVL62gWR0CameExZdOZdX2UKGgGaAloD0MIFvn1Q2xpcUCUhpRSlGgVS+ZoFkdAmppgI6bONnV9lChoBmgJaA9DCIkLQKP05nFAlIaUUpRoFUv2aBZHQJqaescQyyl1fZQoaAZoCWgPQwici7/tiV1wQJSGlFKUaBVL1WgWR0CampZ13dKvdX2UKGgGaAloD0MIsDkHz0QtcUCUhpRSlGgVS/ZoFkdAmpq9Brvb5HV9lChoBmgJaA9DCANgPINGpXBAlIaUUpRoFUv8aBZHQJqayrKeTV51fZQoaAZoCWgPQwhag/dV+VRxQJSGlFKUaBVLyWgWR0CamuG+bmU4dX2UKGgGaAloD0MIZXJqZ9gfc0CUhpRSlGgVS9ZoFkdAmpwFAE+xGHV9lChoBmgJaA9DCFsMHqY9OnBAlIaUUpRoFUvOaBZHQJqcLMC9ytF1fZQoaAZoCWgPQwg9npYfOEZwQJSGlFKUaBVLzWgWR0CanD7uDzy0dX2UKGgGaAloD0MIM23/ygpVcECUhpRSlGgVS95oFkdAmpyK+nIhhnV9lChoBmgJaA9DCAMF3sknzHNAlIaUUpRoFUvSaBZHQJqck4Ia99N1fZQoaAZoCWgPQwjaPA6DOZBwQJSGlFKUaBVLzWgWR0CanUUhFEy+dX2UKGgGaAloD0MIQWK7e8CWcUCUhpRSlGgVS8ZoFkdAmp1KreZXuHV9lChoBmgJaA9DCHu9++P9lnBAlIaUUpRoFUveaBZHQJqdW2d/axp1fZQoaAZoCWgPQwgfgT/8/B1OQJSGlFKUaBVLimgWR0CanbWVeKKpdX2UKGgGaAloD0MIjSeCOA/lRkCUhpRSlGgVS6loFkdAmp3cSXdCV3V9lChoBmgJaA9DCDeI1oq2GXRAlIaUUpRoFUv+aBZHQJqfSfBeok11fZQoaAZoCWgPQwiSdw5l6B9yQJSGlFKUaBVL5mgWR0Can2nSOR1YdX2UKGgGaAloD0MIDW5rC0+9cUCUhpRSlGgVS+1oFkdAmp91ZcLSeHV9lChoBmgJaA9DCCO/foiNKnBAlIaUUpRoFUv3aBZHQJqf8EC/47B1fZQoaAZoCWgPQwj3j4Xo0K5yQJSGlFKUaBVL+WgWR0CaoAdV/+bWdX2UKGgGaAloD0MId/aVB6lJckCUhpRSlGgVS+FoFkdAmqETeO4oZ3V9lChoBmgJaA9DCIKMgArHP3FAlIaUUpRoFUvcaBZHQJqhbrSmZVp1fZQoaAZoCWgPQwiu8Zns345xQJSGlFKUaBVL6GgWR0CaobUR3/xUdX2UKGgGaAloD0MId2hYjDpecECUhpRSlGgVS/doFkdAmqG6R+z+m3V9lChoBmgJaA9DCHLcKR3sBHFAlIaUUpRoFU0KAWgWR0CaofAMDwH8dX2UKGgGaAloD0MIEk2giAWHc0CUhpRSlGgVS+loFkdAmqKhT4tYjnV9lChoBmgJaA9DCLdB7bf2J3BAlIaUUpRoFUvTaBZHQJqisZiuuA91fZQoaAZoCWgPQwjYR6euPKxwQJSGlFKUaBVL8WgWR0CaormSyMUAdX2UKGgGaAloD0MItjAL7VztcUCUhpRSlGgVS+loFkdAmqMBkEs8PnV9lChoBmgJaA9DCAxzgjY5zExAlIaUUpRoFUunaBZHQJqjI7IT4+N1fZQoaAZoCWgPQwjbwYh9wt5wQJSGlFKUaBVNRgJoFkdAmqO/keZG8XV9lChoBmgJaA9DCBVUVP3KQnNAlIaUUpRoFU0xAWgWR0CapB1F6RhddX2UKGgGaAloD0MIUDqRYKqhcECUhpRSlGgVS+ZoFkdAmqSVCXyAhHV9lChoBmgJaA9DCF3fh4ME7nFAlIaUUpRoFUvRaBZHQJqkpZ6lchV1fZQoaAZoCWgPQwhaLEXyVRhxQJSGlFKUaBVL8WgWR0CapNURFqi5dX2UKGgGaAloD0MIiUFg5VAtcECUhpRSlGgVS9ZoFkdAmqTTaPCEYnV9lChoBmgJaA9DCDJ3LSFflHFAlIaUUpRoFUvZaBZHQJqlxlcyFf11fZQoaAZoCWgPQwiIg4Qo30xuQJSGlFKUaBVL0GgWR0CaphrtmcvvdX2UKGgGaAloD0MIeqUsQxzccUCUhpRSlGgVS85oFkdAmqZAB5ooNXV9lChoBmgJaA9DCEsC1NSypHJAlIaUUpRoFUvlaBZHQJqmUY3vQWx1fZQoaAZoCWgPQwhYrrfNlLRyQJSGlFKUaBVL3WgWR0CapmGQjlgddX2UKGgGaAloD0MIB5eOOU/wcUCUhpRSlGgVS85oFkdAmqbvYnOSn3V9lChoBmgJaA9DCML7qlyow29AlIaUUpRoFUvdaBZHQJqnTmHP/rB1fZQoaAZoCWgPQwjRIXAkUBNuQJSGlFKUaBVL4WgWR0Cap650r9VFdX2UKGgGaAloD0MIgCiYMQVEckCUhpRSlGgVS/doFkdAmqfOAZsKs3V9lChoBmgJaA9DCGNDN/sDPm9AlIaUUpRoFUvdaBZHQJqoVKQJXyR1fZQoaAZoCWgPQwg50a5Cig9zQJSGlFKUaBVL72gWR0CaqRwpvxYrdX2UKGgGaAloD0MILUKxFfRrcUCUhpRSlGgVS81oFkdAmqkp7sv7FnV9lChoBmgJaA9DCGB15Ehn925AlIaUUpRoFUveaBZHQJqpVm7J4jd1fZQoaAZoCWgPQwhPzHox1MVwQJSGlFKUaBVL12gWR0CaqWV7x/d7dX2UKGgGaAloD0MIVp+rrRhNckCUhpRSlGgVS+1oFkdAmqmYJJGvwHV9lChoBmgJaA9DCKZ7ndTXJ3FAlIaUUpRoFUveaBZHQJqqmfZmI0t1fZQoaAZoCWgPQwjturci8UByQJSGlFKUaBVLzGgWR0CaquYKYzBRdX2UKGgGaAloD0MIsOQqFj9acECUhpRSlGgVS9doFkdAmqsUbYK6WnV9lChoBmgJaA9DCGx8JvunU3FAlIaUUpRoFU0VAWgWR0CarGGsmv4edX2UKGgGaAloD0MIT5DY7l7DcECUhpRSlGgVS/JoFkdAmqyClWOp9HV9lChoBmgJaA9DCC6M9KK2AXFAlIaUUpRoFUvjaBZHQJqsjkOqebx1fZQoaAZoCWgPQwhLBKp/EMlwQJSGlFKUaBVL5WgWR0CarQlZowmFdX2UKGgGaAloD0MINjtSfaccc0CUhpRSlGgVS+FoFkdAmq0QezUqhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0571d32587d1a7f61369acc0924a917364a40ef1cbad87f3676cadaf4fe72a46
|
3 |
+
size 147102
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd463d58160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd463d581f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd463d58280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd463d58310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd463d583a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd463d58430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd463d584c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd463d58550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd463d585e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd463d58670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd463d58700>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd463d4ebd0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671848102435906279,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNzEj7TRu4+G+UZvvrVyb4Ntso92gkkvgAAAAAAAAAAzTzqOnGWPbs4yc86QD/APBEBirylQqM9AACAPwAAgD+aFlw+ynp0P4CS9j0XiQm/I8qMPh1IBL4AAAAAAAAAAFM9tD4Gblc/XfiaPi3JEL8nOOw+0sALvQAAAAAAAAAAAFKevClgYroqlso5ofOVNbQOczqFO+64AACAPwAAgD/N3Do72A8LPzpyljxN/76+f5igPD5tkz0AAAAAAAAAAJqc+jwKSym77gEyO7wwgzzGbzC8s21jPQAAgD8AAIA/gO4hPeyZ9blIJte7wrCntVLjSrqsHxw1AACAPwAAAACz0ZI9XMtAujWf7rNUPiWtVJN3ukaEsDMAAIA/AACAP838pzqckRE+RLG3PX9SmL7t47Y9PonGvAAAAAAAAAAAs8fHPZTb5T0YW7e980GkvgsyNj2H48O8AAAAAAAAAAAK3Ze+uUcsP4pixz5fExa/r3PEvi8BqD4AAAAAAAAAAGaOyLyu0YG69a9oM1pTNC9c32C5q6TEswAAgD8AAIA/s3xdPfb4Rrp+qFu8rGI3NkVKoLvDDqS1AAAAAAAAAADAM7K93IRfPn0aXT68jZ6+e4mqPZKSID0AAAAAAAAAAIBekz1cAzO6yhw6M6pZerBIE7Q7HEnDswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKVsk7caCc0CUhpRSlIwBbJRL6YwBdJRHQJp6qV5a/yp1fZQoaAZoCWgPQwhlOJ7PgCJ0QJSGlFKUaBVLzGgWR0CaeqqN6w+udX2UKGgGaAloD0MIfJ3UlyU6cUCUhpRSlGgVS+loFkdAmnuMIiTt9nV9lChoBmgJaA9DCKYnLPHAj3BAlIaUUpRoFUvsaBZHQJp7xt52Qnx1fZQoaAZoCWgPQwi8W1mi87lyQJSGlFKUaBVL+2gWR0Cae89mpVCHdX2UKGgGaAloD0MIxf8dUaEvcECUhpRSlGgVS9VoFkdAmnwltoBaLXV9lChoBmgJaA9DCKIm+nzUY3FAlIaUUpRoFU0CAWgWR0CafJX5FgDzdX2UKGgGaAloD0MIRE5fzxfGcECUhpRSlGgVS9xoFkdAmnybsWweNnV9lChoBmgJaA9DCCgoRSu3g3JAlIaUUpRoFU0oAWgWR0CafQsyi22HdX2UKGgGaAloD0MIN4sXC0NHc0CUhpRSlGgVS+JoFkdAmn2m7z06HXV9lChoBmgJaA9DCFjFG5lH9E9AlIaUUpRoFUumaBZHQJp95sdkrgB1fZQoaAZoCWgPQwgV4pF4Oa9yQJSGlFKUaBVNBgFoFkdAmn4i2H+IdnV9lChoBmgJaA9DCBDqIoWyC3JAlIaUUpRoFUv3aBZHQJp+UK7ZnL91fZQoaAZoCWgPQwg4LA38KGxzQJSGlFKUaBVL5WgWR0CafoE12q1gdX2UKGgGaAloD0MIU+dR8X9ycECUhpRSlGgVS8loFkdAmn6uhK15SnV9lChoBmgJaA9DCLFSQUXVF3JAlIaUUpRoFUvwaBZHQJp/f544ZMt1fZQoaAZoCWgPQwjJrrSM1F1yQJSGlFKUaBVLwWgWR0Caf+zH0btJdX2UKGgGaAloD0MIM8Lbg9ApcUCUhpRSlGgVS/ZoFkdAmn//XCj1w3V9lChoBmgJaA9DCGR1q+ckcnNAlIaUUpRoFUvgaBZHQJqAnOJLuhN1fZQoaAZoCWgPQwhv9gfKbTZyQJSGlFKUaBVL4mgWR0CagP0dBBzFdX2UKGgGaAloD0MIsqAwKFMfdECUhpRSlGgVTQUBaBZHQJqBL9ETg2t1fZQoaAZoCWgPQwggm+RHvGJxQJSGlFKUaBVL2WgWR0CagUKEnLJTdX2UKGgGaAloD0MIkIKnkKvYcECUhpRSlGgVTUoBaBZHQJqB0x8D0UZ1fZQoaAZoCWgPQwgQyvs4GslvQJSGlFKUaBVL5GgWR0CaggRO1v2odX2UKGgGaAloD0MI0xQBTq/McUCUhpRSlGgVTQgBaBZHQJqCT50r9VF1fZQoaAZoCWgPQwg9DoP5q4JyQJSGlFKUaBVL3WgWR0Cagn0PpY9xdX2UKGgGaAloD0MITS1b68t4ckCUhpRSlGgVS7toFkdAmoKQMpgCwXV9lChoBmgJaA9DCEzGMZI9rXFAlIaUUpRoFUvMaBZHQJqCjXPJJXh1fZQoaAZoCWgPQwiNJEG4gmZzQJSGlFKUaBVL8WgWR0Cagwvg3tKJdX2UKGgGaAloD0MIWikEcsmTcECUhpRSlGgVS/hoFkdAmoOPMr3CbnV9lChoBmgJaA9DCKaZ7nXSIHRAlIaUUpRoFUv/aBZHQJqEEv24/eN1fZQoaAZoCWgPQwiCb5o++2hxQJSGlFKUaBVL2WgWR0CahI6f8MuwdX2UKGgGaAloD0MIXmbYKGucckCUhpRSlGgVS+VoFkdAmpezZlFtsXV9lChoBmgJaA9DCEd3EDtTzk5AlIaUUpRoFUuTaBZHQJqXvh5xBE91fZQoaAZoCWgPQwhPstXl1IpyQJSGlFKUaBVLzGgWR0Cal83mV7hOdX2UKGgGaAloD0MIRSxi2KFDcUCUhpRSlGgVTQoBaBZHQJqYCxC6Ymd1fZQoaAZoCWgPQwj9iF+xBhNyQJSGlFKUaBVL3mgWR0CamIbbUPQOdX2UKGgGaAloD0MIwR4TKQ1QcUCUhpRSlGgVS+JoFkdAmpjQCjk+5nV9lChoBmgJaA9DCJT43Al27W9AlIaUUpRoFUvnaBZHQJqY+0PYnOV1fZQoaAZoCWgPQwgvFLAdTGVzQJSGlFKUaBVL62gWR0CameExZdOZdX2UKGgGaAloD0MIFvn1Q2xpcUCUhpRSlGgVS+ZoFkdAmppgI6bONnV9lChoBmgJaA9DCIkLQKP05nFAlIaUUpRoFUv2aBZHQJqaescQyyl1fZQoaAZoCWgPQwici7/tiV1wQJSGlFKUaBVL1WgWR0CampZ13dKvdX2UKGgGaAloD0MIsDkHz0QtcUCUhpRSlGgVS/ZoFkdAmpq9Brvb5HV9lChoBmgJaA9DCANgPINGpXBAlIaUUpRoFUv8aBZHQJqayrKeTV51fZQoaAZoCWgPQwhag/dV+VRxQJSGlFKUaBVLyWgWR0CamuG+bmU4dX2UKGgGaAloD0MIZXJqZ9gfc0CUhpRSlGgVS9ZoFkdAmpwFAE+xGHV9lChoBmgJaA9DCFsMHqY9OnBAlIaUUpRoFUvOaBZHQJqcLMC9ytF1fZQoaAZoCWgPQwg9npYfOEZwQJSGlFKUaBVLzWgWR0CanD7uDzy0dX2UKGgGaAloD0MIM23/ygpVcECUhpRSlGgVS95oFkdAmpyK+nIhhnV9lChoBmgJaA9DCAMF3sknzHNAlIaUUpRoFUvSaBZHQJqck4Ia99N1fZQoaAZoCWgPQwjaPA6DOZBwQJSGlFKUaBVLzWgWR0CanUUhFEy+dX2UKGgGaAloD0MIQWK7e8CWcUCUhpRSlGgVS8ZoFkdAmp1KreZXuHV9lChoBmgJaA9DCHu9++P9lnBAlIaUUpRoFUveaBZHQJqdW2d/axp1fZQoaAZoCWgPQwgfgT/8/B1OQJSGlFKUaBVLimgWR0CanbWVeKKpdX2UKGgGaAloD0MIjSeCOA/lRkCUhpRSlGgVS6loFkdAmp3cSXdCV3V9lChoBmgJaA9DCDeI1oq2GXRAlIaUUpRoFUv+aBZHQJqfSfBeok11fZQoaAZoCWgPQwiSdw5l6B9yQJSGlFKUaBVL5mgWR0Can2nSOR1YdX2UKGgGaAloD0MIDW5rC0+9cUCUhpRSlGgVS+1oFkdAmp91ZcLSeHV9lChoBmgJaA9DCCO/foiNKnBAlIaUUpRoFUv3aBZHQJqf8EC/47B1fZQoaAZoCWgPQwj3j4Xo0K5yQJSGlFKUaBVL+WgWR0CaoAdV/+bWdX2UKGgGaAloD0MId/aVB6lJckCUhpRSlGgVS+FoFkdAmqETeO4oZ3V9lChoBmgJaA9DCIKMgArHP3FAlIaUUpRoFUvcaBZHQJqhbrSmZVp1fZQoaAZoCWgPQwiu8Zns345xQJSGlFKUaBVL6GgWR0CaobUR3/xUdX2UKGgGaAloD0MId2hYjDpecECUhpRSlGgVS/doFkdAmqG6R+z+m3V9lChoBmgJaA9DCHLcKR3sBHFAlIaUUpRoFU0KAWgWR0CaofAMDwH8dX2UKGgGaAloD0MIEk2giAWHc0CUhpRSlGgVS+loFkdAmqKhT4tYjnV9lChoBmgJaA9DCLdB7bf2J3BAlIaUUpRoFUvTaBZHQJqisZiuuA91fZQoaAZoCWgPQwjYR6euPKxwQJSGlFKUaBVL8WgWR0CaormSyMUAdX2UKGgGaAloD0MItjAL7VztcUCUhpRSlGgVS+loFkdAmqMBkEs8PnV9lChoBmgJaA9DCAxzgjY5zExAlIaUUpRoFUunaBZHQJqjI7IT4+N1fZQoaAZoCWgPQwjbwYh9wt5wQJSGlFKUaBVNRgJoFkdAmqO/keZG8XV9lChoBmgJaA9DCBVUVP3KQnNAlIaUUpRoFU0xAWgWR0CapB1F6RhddX2UKGgGaAloD0MIUDqRYKqhcECUhpRSlGgVS+ZoFkdAmqSVCXyAhHV9lChoBmgJaA9DCF3fh4ME7nFAlIaUUpRoFUvRaBZHQJqkpZ6lchV1fZQoaAZoCWgPQwhaLEXyVRhxQJSGlFKUaBVL8WgWR0CapNURFqi5dX2UKGgGaAloD0MIiUFg5VAtcECUhpRSlGgVS9ZoFkdAmqTTaPCEYnV9lChoBmgJaA9DCDJ3LSFflHFAlIaUUpRoFUvZaBZHQJqlxlcyFf11fZQoaAZoCWgPQwiIg4Qo30xuQJSGlFKUaBVL0GgWR0CaphrtmcvvdX2UKGgGaAloD0MIeqUsQxzccUCUhpRSlGgVS85oFkdAmqZAB5ooNXV9lChoBmgJaA9DCEsC1NSypHJAlIaUUpRoFUvlaBZHQJqmUY3vQWx1fZQoaAZoCWgPQwhYrrfNlLRyQJSGlFKUaBVL3WgWR0CapmGQjlgddX2UKGgGaAloD0MIB5eOOU/wcUCUhpRSlGgVS85oFkdAmqbvYnOSn3V9lChoBmgJaA9DCML7qlyow29AlIaUUpRoFUvdaBZHQJqnTmHP/rB1fZQoaAZoCWgPQwjRIXAkUBNuQJSGlFKUaBVL4WgWR0Cap650r9VFdX2UKGgGaAloD0MIgCiYMQVEckCUhpRSlGgVS/doFkdAmqfOAZsKs3V9lChoBmgJaA9DCGNDN/sDPm9AlIaUUpRoFUvdaBZHQJqoVKQJXyR1fZQoaAZoCWgPQwg50a5Cig9zQJSGlFKUaBVL72gWR0CaqRwpvxYrdX2UKGgGaAloD0MILUKxFfRrcUCUhpRSlGgVS81oFkdAmqkp7sv7FnV9lChoBmgJaA9DCGB15Ehn925AlIaUUpRoFUveaBZHQJqpVm7J4jd1fZQoaAZoCWgPQwhPzHox1MVwQJSGlFKUaBVL12gWR0CaqWV7x/d7dX2UKGgGaAloD0MIVp+rrRhNckCUhpRSlGgVS+1oFkdAmqmYJJGvwHV9lChoBmgJaA9DCKZ7ndTXJ3FAlIaUUpRoFUveaBZHQJqqmfZmI0t1fZQoaAZoCWgPQwjturci8UByQJSGlFKUaBVLzGgWR0CaquYKYzBRdX2UKGgGaAloD0MIsOQqFj9acECUhpRSlGgVS9doFkdAmqsUbYK6WnV9lChoBmgJaA9DCGx8JvunU3FAlIaUUpRoFU0VAWgWR0CarGGsmv4edX2UKGgGaAloD0MIT5DY7l7DcECUhpRSlGgVS/JoFkdAmqyClWOp9HV9lChoBmgJaA9DCC6M9KK2AXFAlIaUUpRoFUvjaBZHQJqsjkOqebx1fZQoaAZoCWgPQwhLBKp/EMlwQJSGlFKUaBVL5WgWR0CarQlZowmFdX2UKGgGaAloD0MINjtSfaccc0CUhpRSlGgVS+FoFkdAmq0QezUqhHVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 492,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0a82dec39b055fb5c81e1ca90ec1a02eadfaaf6ef32718fea4b5c158a1cff3e
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7f8fb09c8c0aa8f899f934c138f8a2ebd5fc7ad33e353727ec45d661fce5401
|
3 |
+
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.95708713271495, "std_reward": 20.563236030672698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-24T02:43:33.935511"}
|