bitcloud2 commited on
Commit
b25f4d8
·
1 Parent(s): 7550c6d

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -7.84 +/- 1.76
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -2.31 +/- 0.33
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9afc16b8962080825860ffba63852e3783957044fade7ad99d57fabf6c842f8
3
- size 108001
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae0e0f0b2bc42ddbdf2846b07f69e9f1e42813e1a57c0705c6bffbab0bbde7cc
3
+ size 108036
a2c-PandaReachDense-v2/data CHANGED
@@ -4,11 +4,11 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"
10
  },
11
- "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
  ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 4000000,
45
- "_total_timesteps": 4000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1674373009249308692,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAPwVP01oYj2/d9s+APwVP01oYj2/d9s+APwVP01oYj2/d9s+APwVP01oYj2/d9s+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6UAfP+PBiD84MLy/to0ePnKDvL8BYVw/jIugv2wb1LzMJBo9hHWIv9fh+T1A7ca/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]]",
60
- "desired_goal": "[[ 0.6220842 1.068417 -1.4702215 ]\n [ 0.15483746 -1.4727614 0.86085516]\n [-1.2542586 -0.02589198 0.03763275]\n [-1.0660863 0.12201279 -1.5541153 ]]",
61
- "observation": "[[0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxsvAvadj6zwZkdU99KBrPdg+tL0Y9Vg+absvPdIUEz7V5Jk9TRMXPrZj8Dx2Zeg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.09413867 0.02873404 0.10428066]\n [ 0.05752654 -0.08801049 0.21187246]\n [ 0.04290334 0.14363411 0.07514349]\n [ 0.14753456 0.02934442 0.11347477]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjrETXoKDHcCUhpRSlIwBbJRLMowBdJRHQMAygg3T/hl1fZQoaAZoCWgPQwgTZtr+lfUZwJSGlFKUaBVLMmgWR0DAMnbO1OTJdX2UKGgGaAloD0MIba0vEtpyIMCUhpRSlGgVSzJoFkdAwDJrZyuIRHV9lChoBmgJaA9DCF73ViQmWBzAlIaUUpRoFUsyaBZHQMAyX8n3L3d1fZQoaAZoCWgPQwjIe9XKhN8kwJSGlFKUaBVLMmgWR0DAMrQ5YHPedX2UKGgGaAloD0MIZhU2A1wAEcCUhpRSlGgVSzJoFkdAwDKo6GxlhHV9lChoBmgJaA9DCGzQl97+TBTAlIaUUpRoFUsyaBZHQMAynXyiEg51fZQoaAZoCWgPQwgTukvirLgbwJSGlFKUaBVLMmgWR0DAMpHuw5eadX2UKGgGaAloD0MIQuxMofPaFsCUhpRSlGgVSzJoFkdAwDLk3vx6OnV9lChoBmgJaA9DCJePpKSHgSDAlIaUUpRoFUsyaBZHQMAy2YuCf6J1fZQoaAZoCWgPQwh/2qhOBzIjwJSGlFKUaBVLMmgWR0DAMs4dMj/udX2UKGgGaAloD0MIghq+hXVTG8CUhpRSlGgVSzJoFkdAwDLCf+0gKXV9lChoBmgJaA9DCFu0AG2r2STAlIaUUpRoFUsyaBZHQMAzFVr6+Fl1fZQoaAZoCWgPQwgRww5j0m8kwJSGlFKUaBVLMmgWR0DAMwoNG3F2dX2UKGgGaAloD0MIo1pEFJN/IMCUhpRSlGgVSzJoFkdAwDL+n3L3bnV9lChoBmgJaA9DCCB7vfvjrRvAlIaUUpRoFUsyaBZHQMAy8v+GXX11fZQoaAZoCWgPQwiyRj1Eo4sWwJSGlFKUaBVLMmgWR0DAM0eff4yodX2UKGgGaAloD0MIFmu4yD01IMCUhpRSlGgVSzJoFkdAwDM8S39aU3V9lChoBmgJaA9DCKd0sP7PMRTAlIaUUpRoFUsyaBZHQMAzMN/OMVF1fZQoaAZoCWgPQwjC3y9mSwYjwJSGlFKUaBVLMmgWR0DAMyVFKCg9dX2UKGgGaAloD0MIIQTkS6gwJcCUhpRSlGgVSzJoFkdAwDN5C79Q43V9lChoBmgJaA9DCG4ZcJaSxRzAlIaUUpRoFUsyaBZHQMAzbbY9Pk91fZQoaAZoCWgPQwjzxklh3kMawJSGlFKUaBVLMmgWR0DAM2JJPIn0dX2UKGgGaAloD0MIvwrw3eZ9EsCUhpRSlGgVSzJoFkdAwDNWs7MgU3V9lChoBmgJaA9DCG9JDtjVdCTAlIaUUpRoFUsyaBZHQMAzq3irDIl1fZQoaAZoCWgPQwgpXI/C9TghwJSGlFKUaBVLMmgWR0DAM6Am9g4PdX2UKGgGaAloD0MI2ht8YTKVHcCUhpRSlGgVSzJoFkdAwDOUvAXVLHV9lChoBmgJaA9DCJ5i1SDMXRTAlIaUUpRoFUsyaBZHQMAziSIxgzB1fZQoaAZoCWgPQwh40sJlFaYZwJSGlFKUaBVLMmgWR0DAM95xYJVsdX2UKGgGaAloD0MIBJKwbyfRG8CUhpRSlGgVSzJoFkdAwDPTG6PKdXV9lChoBmgJaA9DCIP6ljldphvAlIaUUpRoFUsyaBZHQMAzx6yB06p1fZQoaAZoCWgPQwhz9s5oq2ISwJSGlFKUaBVLMmgWR0DAM7wPy08edX2UKGgGaAloD0MIJA1uawsvKMCUhpRSlGgVSzJoFkdAwDQPrfLs8nV9lChoBmgJaA9DCAwEATJ0DBLAlIaUUpRoFUsyaBZHQMA0BFqrR0F1fZQoaAZoCWgPQwi6LvzgfBocwJSGlFKUaBVLMmgWR0DAM/j3oLXudX2UKGgGaAloD0MI2jnNAu3mIMCUhpRSlGgVSzJoFkdAwDPtV9Wp63V9lChoBmgJaA9DCISB597D/SLAlIaUUpRoFUsyaBZHQMA0QSFwkxB1fZQoaAZoCWgPQwjkoe9uZYkTwJSGlFKUaBVLMmgWR0DANDXMMZxadX2UKGgGaAloD0MIlUkNbQDGGcCUhpRSlGgVSzJoFkdAwDQqYF7laXV9lChoBmgJaA9DCD6xTpXvOSPAlIaUUpRoFUsyaBZHQMA0HsTnJT51fZQoaAZoCWgPQwiQLcvXZVgcwJSGlFKUaBVLMmgWR0DANHK4QSSNdX2UKGgGaAloD0MIlPjcCfZPFMCUhpRSlGgVSzJoFkdAwDRnZpSJj3V9lChoBmgJaA9DCJj2zf3V0xnAlIaUUpRoFUsyaBZHQMA0W/kNnXd1fZQoaAZoCWgPQwjtfaoKDQwiwJSGlFKUaBVLMmgWR0DANFBdUsFudX2UKGgGaAloD0MILsvXZfiHKsCUhpRSlGgVSzJoFkdAwDSjzuF6A3V9lChoBmgJaA9DCIJzRpT2LirAlIaUUpRoFUsyaBZHQMA0mIKD0191fZQoaAZoCWgPQwjJOhxdpTsYwJSGlFKUaBVLMmgWR0DANI0Wj45+dX2UKGgGaAloD0MItcU1PpOlJcCUhpRSlGgVSzJoFkdAwDSBe/Ho5nV9lChoBmgJaA9DCA/vObAccRvAlIaUUpRoFUsyaBZHQMA01g2qDK51fZQoaAZoCWgPQwj203/W/DAowJSGlFKUaBVLMmgWR0DANMq0Sh8IdX2UKGgGaAloD0MIKo2Y2eeJIcCUhpRSlGgVSzJoFkdAwDS/VENOM3V9lChoBmgJaA9DCNs2jILg0SXAlIaUUpRoFUsyaBZHQMA0s7gTAWV1fZQoaAZoCWgPQwikiXeAJw0gwJSGlFKUaBVLMmgWR0DANQgvSMLndX2UKGgGaAloD0MIHTwTmiRWGsCUhpRSlGgVSzJoFkdAwDT82MKkVXV9lChoBmgJaA9DCIW1MXbCexjAlIaUUpRoFUsyaBZHQMA08WvB7/p1fZQoaAZoCWgPQwhnYORlTQwTwJSGlFKUaBVLMmgWR0DANOXhsImgdX2UKGgGaAloD0MIV0PiHkufGcCUhpRSlGgVSzJoFkdAwDU4o2GZeHV9lChoBmgJaA9DCAfTMHxE7CTAlIaUUpRoFUsyaBZHQMA1LU9ZA6d1fZQoaAZoCWgPQwgc7E0MyfkdwJSGlFKUaBVLMmgWR0DANSHkcS5BdX2UKGgGaAloD0MIsd6oFaafHsCUhpRSlGgVSzJoFkdAwDUWSFGoaXV9lChoBmgJaA9DCIZUUbzKWiDAlIaUUpRoFUsyaBZHQMA1aaTOgQJ1fZQoaAZoCWgPQwgpWyTtRp8SwJSGlFKUaBVLMmgWR0DANV5XGOuJdX2UKGgGaAloD0MI5gKXx5qhE8CUhpRSlGgVSzJoFkdAwDVS6iCaqnV9lChoBmgJaA9DCBnHSPYItRrAlIaUUpRoFUsyaBZHQMA1R08/2TR1fZQoaAZoCWgPQwgn+Kbps3MbwJSGlFKUaBVLMmgWR0DANZt5rxiHdX2UKGgGaAloD0MIqZ83FakwHMCUhpRSlGgVSzJoFkdAwDWQLeANG3V9lChoBmgJaA9DCD2CGylbvCXAlIaUUpRoFUsyaBZHQMA1hMH0K7Z1fZQoaAZoCWgPQwh39L9ci8YbwJSGlFKUaBVLMmgWR0DANXkmICU5dX2UKGgGaAloD0MIqySyD7I0I8CUhpRSlGgVSzJoFkdAwDXNVurIYHV9lChoBmgJaA9DCKYnLPGAsiHAlIaUUpRoFUsyaBZHQMA1wgWi1zB1fZQoaAZoCWgPQwitS43QzzQjwJSGlFKUaBVLMmgWR0DANbaXv6TGdX2UKGgGaAloD0MIP1jGhm6mG8CUhpRSlGgVSzJoFkdAwDWrCJoCdXV9lChoBmgJaA9DCBWRYRVvRBfAlIaUUpRoFUsyaBZHQMA1/hvaURp1fZQoaAZoCWgPQwjd66S+LD0kwJSGlFKUaBVLMmgWR0DANfLZnL7odX2UKGgGaAloD0MIu9IyUu9pFsCUhpRSlGgVSzJoFkdAwDXnb9qDb3V9lChoBmgJaA9DCHeBkgILWCDAlIaUUpRoFUsyaBZHQMA12+EZiux1fZQoaAZoCWgPQwhmEB/Y8b8dwJSGlFKUaBVLMmgWR0DANi9DIBBBdX2UKGgGaAloD0MI1Xd+UYL+HMCUhpRSlGgVSzJoFkdAwDYj92HLzXV9lChoBmgJaA9DCAdDHVa4DSTAlIaUUpRoFUsyaBZHQMA2GIc7yQR1fZQoaAZoCWgPQwjToGgewMIcwJSGlFKUaBVLMmgWR0DANgzqUu+RdX2UKGgGaAloD0MI34juWdegJ8CUhpRSlGgVSzJoFkdAwDZhQNTcZnV9lChoBmgJaA9DCJaS5SSUjhnAlIaUUpRoFUsyaBZHQMA2Ver+5vt1fZQoaAZoCWgPQwhJopdRLMcTwJSGlFKUaBVLMmgWR0DANkqAWi1zdX2UKGgGaAloD0MIIJp5ck3BGMCUhpRSlGgVSzJoFkdAwDY++RHPNXV9lChoBmgJaA9DCClC6nb25RfAlIaUUpRoFUsyaBZHQMA2ks052hZ1fZQoaAZoCWgPQwgmb4CZ70AbwJSGlFKUaBVLMmgWR0DANoejIq9XdX2UKGgGaAloD0MIo+iBj8HiJMCUhpRSlGgVSzJoFkdAwDZ8M+/xlXV9lChoBmgJaA9DCKsGYW73KiXAlIaUUpRoFUsyaBZHQMA2cJNKyv91fZQoaAZoCWgPQwjqk9xhE7ElwJSGlFKUaBVLMmgWR0DANsOVE/jbdX2UKGgGaAloD0MIp7Io7KIIFcCUhpRSlGgVSzJoFkdAwDa4QOFxn3V9lChoBmgJaA9DCLOVl/xP/hPAlIaUUpRoFUsyaBZHQMA2rNUOuq51fZQoaAZoCWgPQwiU+UffpBkWwJSGlFKUaBVLMmgWR0DANqFe8f3fdX2UKGgGaAloD0MIH9rHCn4rJcCUhpRSlGgVSzJoFkdAwDb0nLq2SnV9lChoBmgJaA9DCCV2bW+31CHAlIaUUpRoFUsyaBZHQMA26UlAu7J1fZQoaAZoCWgPQwh7EW3H1K0VwJSGlFKUaBVLMmgWR0DANt3juKGddX2UKGgGaAloD0MIGXCWkuUkGMCUhpRSlGgVSzJoFkdAwDbSR2bG3nV9lChoBmgJaA9DCOXRjbCoOBTAlIaUUpRoFUsyaBZHQMA3JqGcnVp1fZQoaAZoCWgPQwhKz/QSY7ElwJSGlFKUaBVLMmgWR0DANxtYB/7SdX2UKGgGaAloD0MIvY+jObIyFcCUhpRSlGgVSzJoFkdAwDcP6nBLwnV9lChoBmgJaA9DCOsZwjHLjhLAlIaUUpRoFUsyaBZHQMA3BEzoEB91ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 200000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8a96703820>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8a966eade0>"
10
  },
11
+ "verbose": 0,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
  ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1674406599196260386,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVah0vXOvSL8LdNS8SAkTP99vkz4+Cxc+3BZFP0Tqtr+EuMO/hNVnP7+yrr5cuDE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]]",
60
+ "desired_goal": "[[-0.05973085 -0.78392714 -0.02593424]\n [ 0.5743604 0.28796288 0.14750382]\n [ 0.76988006 -1.4290242 -1.5290685 ]\n [ 0.90560174 -0.34120747 0.69421935]]",
61
+ "observation": "[[ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHoZrvSujDz4ShcI9PPSivNBU8b3Et4E+2g/kvbrD5zzl/VU9fnt/u4p8rL0Om9w8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05750095 0.14027087 0.09498037]\n [-0.01989185 -0.11783755 0.25335515]\n [-0.11135836 0.02829157 0.05224409]\n [-0.00389835 -0.08422191 0.0269294 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfGEyVTAqBsCUhpRSlIwBbJRLMowBdJRHQKHXuQjlgc91fZQoaAZoCWgPQwhI4XoUrocEwJSGlFKUaBVLMmgWR0Ch14k7wKBvdX2UKGgGaAloD0MIAb7bvHESAsCUhpRSlGgVSzJoFkdAoddaeEqUeXV9lChoBmgJaA9DCCCaeXJNwQfAlIaUUpRoFUsyaBZHQKHXLF3IMjN1fZQoaAZoCWgPQwh7TKQ0m8cLwJSGlFKUaBVLMmgWR0Ch2MtGus90dX2UKGgGaAloD0MIVwbVBifCBMCUhpRSlGgVSzJoFkdAodibSCvovHV9lChoBmgJaA9DCKtefqfJTPy/lIaUUpRoFUsyaBZHQKHYbFvQ4S91fZQoaAZoCWgPQwi/7nTniWf6v5SGlFKUaBVLMmgWR0Ch2D6iTMaCdX2UKGgGaAloD0MIaykg7X9wEMCUhpRSlGgVSzJoFkdAodm7Ackt3HV9lChoBmgJaA9DCFXCE3r9KQjAlIaUUpRoFUsyaBZHQKHZiw8nuzB1fZQoaAZoCWgPQwjFknL3OX4FwJSGlFKUaBVLMmgWR0Ch2VwvYe1bdX2UKGgGaAloD0MIJ0pCIm2TEMCUhpRSlGgVSzJoFkdAodkr1GsmwHV9lChoBmgJaA9DCBOB6h9EUgjAlIaUUpRoFUsyaBZHQKHaqcy31Bd1fZQoaAZoCWgPQwhn74y2KskLwJSGlFKUaBVLMmgWR0Ch2nmt6ol2dX2UKGgGaAloD0MIexAC8iW0D8CUhpRSlGgVSzJoFkdAodpK24NI9XV9lChoBmgJaA9DCKsGYW73IhTAlIaUUpRoFUsyaBZHQKHaGmw7kn11fZQoaAZoCWgPQwjWq8jogGQMwJSGlFKUaBVLMmgWR0Ch25hF3IMjdX2UKGgGaAloD0MIUkgyq3cYD8CUhpRSlGgVSzJoFkdAodtoQjD8+HV9lChoBmgJaA9DCAMixJWzFwnAlIaUUpRoFUsyaBZHQKHbOUTL4et1fZQoaAZoCWgPQwi28/3UeAkDwJSGlFKUaBVLMmgWR0Ch2wjhtLtedX2UKGgGaAloD0MIgsR29wBdB8CUhpRSlGgVSzJoFkdAodyTZQHiWHV9lChoBmgJaA9DCPmekQiNQA7AlIaUUpRoFUsyaBZHQKHcY2xY7q91fZQoaAZoCWgPQwjKU1bT9UT1v5SGlFKUaBVLMmgWR0Ch3DUKRdQgdX2UKGgGaAloD0MI+py7XS+NB8CUhpRSlGgVSzJoFkdAodwEqe9SM3V9lChoBmgJaA9DCGy1h71QQPy/lIaUUpRoFUsyaBZHQKHdhX+VC5V1fZQoaAZoCWgPQwhI3jmUoaoJwJSGlFKUaBVLMmgWR0Ch3VW1lXijdX2UKGgGaAloD0MI5X/yd+9IBcCUhpRSlGgVSzJoFkdAod0mqzZ6EHV9lChoBmgJaA9DCBrh7UEIqAPAlIaUUpRoFUsyaBZHQKHc9lGPPs11fZQoaAZoCWgPQwhUqkTZW5oRwJSGlFKUaBVLMmgWR0Ch3m0B4lhPdX2UKGgGaAloD0MI7dgIxOv6DcCUhpRSlGgVSzJoFkdAod49DjR2KXV9lChoBmgJaA9DCExr09heawTAlIaUUpRoFUsyaBZHQKHeDj1f3N91fZQoaAZoCWgPQwjqXif1Zen/v5SGlFKUaBVLMmgWR0Ch3d27FsHjdX2UKGgGaAloD0MIMILGTKKeCMCUhpRSlGgVSzJoFkdAod9ZaePJaXV9lChoBmgJaA9DCF+3CIz1zQnAlIaUUpRoFUsyaBZHQKHfKYl6Z6V1fZQoaAZoCWgPQwgxmL9C5joQwJSGlFKUaBVLMmgWR0Ch3vqW1MM7dX2UKGgGaAloD0MIJEVkWMW7DsCUhpRSlGgVSzJoFkdAod7KVMVUM3V9lChoBmgJaA9DCEGd8uhGWP6/lIaUUpRoFUsyaBZHQKHgVuwX6691fZQoaAZoCWgPQwh7TKQ0mycJwJSGlFKUaBVLMmgWR0Ch4CcLKFIvdX2UKGgGaAloD0MIs3xdhv80CsCUhpRSlGgVSzJoFkdAod/4G+sYEXV9lChoBmgJaA9DCPXWwFYJtgPAlIaUUpRoFUsyaBZHQKHfx+Haewt1fZQoaAZoCWgPQwhQi8HDtM8IwJSGlFKUaBVLMmgWR0Ch4VTOxB3SdX2UKGgGaAloD0MI275H/fUqD8CUhpRSlGgVSzJoFkdAoeEk3l0YCXV9lChoBmgJaA9DCCmXxi+8kgbAlIaUUpRoFUsyaBZHQKHg9gbZOBV1fZQoaAZoCWgPQwi5Us+CUB4PwJSGlFKUaBVLMmgWR0Ch4MXU6PsBdX2UKGgGaAloD0MI9MDHYMXJCMCUhpRSlGgVSzJoFkdAoeI/c1wYL3V9lChoBmgJaA9DCPskd9hEBhDAlIaUUpRoFUsyaBZHQKHiD4JNTLp1fZQoaAZoCWgPQwigihu3mH8HwJSGlFKUaBVLMmgWR0Ch4eDAaef7dX2UKGgGaAloD0MIiDB+GvemCcCUhpRSlGgVSzJoFkdAoeGwcNpdr3V9lChoBmgJaA9DCBjQC3cuTAbAlIaUUpRoFUsyaBZHQKHjMbzbvgF1fZQoaAZoCWgPQwiASSpTzEH7v5SGlFKUaBVLMmgWR0Ch4wIEbHZLdX2UKGgGaAloD0MI8PyiBP0FCMCUhpRSlGgVSzJoFkdAoeLTS1E3KnV9lChoBmgJaA9DCAH20akrXwzAlIaUUpRoFUsyaBZHQKHioxlg+hZ1fZQoaAZoCWgPQwh47dKGw7IJwJSGlFKUaBVLMmgWR0Ch5CPK+zt1dX2UKGgGaAloD0MIVOBkG7gDAcCUhpRSlGgVSzJoFkdAoePz5uZTh3V9lChoBmgJaA9DCAUYlj/f1gXAlIaUUpRoFUsyaBZHQKHjxQoCuEF1fZQoaAZoCWgPQwjba0HvjcEAwJSGlFKUaBVLMmgWR0Ch45S+g13udX2UKGgGaAloD0MIIAiQoWOHA8CUhpRSlGgVSzJoFkdAoeUTSofjj3V9lChoBmgJaA9DCKosCrsoevi/lIaUUpRoFUsyaBZHQKHk428Zk091fZQoaAZoCWgPQwhr1EM0ukMIwJSGlFKUaBVLMmgWR0Ch5LSS/0uldX2UKGgGaAloD0MIxCEbSBe7AMCUhpRSlGgVSzJoFkdAoeSESdvsJXV9lChoBmgJaA9DCGKCGr6F1QrAlIaUUpRoFUsyaBZHQKHmARTS9dx1fZQoaAZoCWgPQwjf3coSnWUFwJSGlFKUaBVLMmgWR0Ch5dExqO94dX2UKGgGaAloD0MIhJ84gH7fB8CUhpRSlGgVSzJoFkdAoeWiSkj5bnV9lChoBmgJaA9DCPW+8bVntgHAlIaUUpRoFUsyaBZHQKHlcgdOqNp1fZQoaAZoCWgPQwgz/n3GhQMFwJSGlFKUaBVLMmgWR0Ch5wR0U47zdX2UKGgGaAloD0MI3Vz8bU9QB8CUhpRSlGgVSzJoFkdAoebUXFcY7HV9lChoBmgJaA9DCD7o2az63P+/lIaUUpRoFUsyaBZHQKHmpg1FYuF1fZQoaAZoCWgPQwjJ6ev5muULwJSGlFKUaBVLMmgWR0Ch5neXqqwRdX2UKGgGaAloD0MIiLmkaruJA8CUhpRSlGgVSzJoFkdAoef8jeKsMnV9lChoBmgJaA9DCCzwFd16LQLAlIaUUpRoFUsyaBZHQKHnzQAMlTp1fZQoaAZoCWgPQwjhJw6g3/cEwJSGlFKUaBVLMmgWR0Ch554Xwb2ldX2UKGgGaAloD0MI71NVaCC2DsCUhpRSlGgVSzJoFkdAoedtv/BFeHV9lChoBmgJaA9DCPHW+bfLvgDAlIaUUpRoFUsyaBZHQKHo7003wTd1fZQoaAZoCWgPQwirXRPSGoMAwJSGlFKUaBVLMmgWR0Ch6L9dNWU9dX2UKGgGaAloD0MITMPwETEFA8CUhpRSlGgVSzJoFkdAoeiQdIXj2nV9lChoBmgJaA9DCIPg8e1dowDAlIaUUpRoFUsyaBZHQKHoYDdxhlV1fZQoaAZoCWgPQwgkJT0MrY4FwJSGlFKUaBVLMmgWR0Ch6eFwkxATdX2UKGgGaAloD0MI5C8t6pP8BcCUhpRSlGgVSzJoFkdAoemxjOLR8nV9lChoBmgJaA9DCIrlllZDogPAlIaUUpRoFUsyaBZHQKHpgqm0mdB1fZQoaAZoCWgPQwhHqu/8oiQKwJSGlFKUaBVLMmgWR0Ch6VJSaVlgdX2UKGgGaAloD0MIM6mhDcCGAsCUhpRSlGgVSzJoFkdAoerrL8rI53V9lChoBmgJaA9DCAvsMZHSDATAlIaUUpRoFUsyaBZHQKHquzHjp9t1fZQoaAZoCWgPQwhoP1JEhjUAwJSGlFKUaBVLMmgWR0Ch6oxZEDyOdX2UKGgGaAloD0MI6dFUT+a/AcCUhpRSlGgVSzJoFkdAoepcC/47BHV9lChoBmgJaA9DCM1YNJ2djADAlIaUUpRoFUsyaBZHQKHr6eo1k2B1fZQoaAZoCWgPQwitNZTai6j3v5SGlFKUaBVLMmgWR0Ch67npjc2zdX2UKGgGaAloD0MI02ndBrWf/L+UhpRSlGgVSzJoFkdAoeuLZg5R0nV9lChoBmgJaA9DCO571F+vsAHAlIaUUpRoFUsyaBZHQKHrXQSi/PB1fZQoaAZoCWgPQwjXT/9Z8+MAwJSGlFKUaBVLMmgWR0Ch7PsCT2WZdX2UKGgGaAloD0MIYkz6eyk8/L+UhpRSlGgVSzJoFkdAoezLot+TeXV9lChoBmgJaA9DCDmZuFUQQ/+/lIaUUpRoFUsyaBZHQKHsnM3ZPEd1fZQoaAZoCWgPQwj7yRgfZk8CwJSGlFKUaBVLMmgWR0Ch7GzMzMzNdX2UKGgGaAloD0MIbjXrjO/rAsCUhpRSlGgVSzJoFkdAoe3vJRwZO3V9lChoBmgJaA9DCMVU+glnFwHAlIaUUpRoFUsyaBZHQKHtv0NBnjB1fZQoaAZoCWgPQwhq9dVVgfoDwJSGlFKUaBVLMmgWR0Ch7ZBvaURndX2UKGgGaAloD0MILXjRV5BmBcCUhpRSlGgVSzJoFkdAoe1gB1cMVnV9lChoBmgJaA9DCDY+k/3zVATAlIaUUpRoFUsyaBZHQKHu4mKIi1R1fZQoaAZoCWgPQwhU46WbxAADwJSGlFKUaBVLMmgWR0Ch7rJiAlOXdX2UKGgGaAloD0MIY9NKIZDrCcCUhpRSlGgVSzJoFkdAoe6DaZhKDnV9lChoBmgJaA9DCL73N2ivngXAlIaUUpRoFUsyaBZHQKHuUzBRAKR1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa3f95645d34a4b4e1625cd75611bef4b10e1abb3f13981b284ebb86d9c794bb
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1592e5e60503e30b75fe747cf4d0cb23d955bc4b10ff22c4267ca51f1af6c0d1
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5edab34435c4e40d19ff1d8d9bcee147931fac151629debe1334da8885934d2
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90cb0c376caf29c015b4549410a59fc13ab06e624e25da1bed21aa4e34093e20
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674373009249308692, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAPwVP01oYj2/d9s+APwVP01oYj2/d9s+APwVP01oYj2/d9s+APwVP01oYj2/d9s+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6UAfP+PBiD84MLy/to0ePnKDvL8BYVw/jIugv2wb1LzMJBo9hHWIv9fh+T1A7ca/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDwA/BU/TWhiPb932z72WJ09HcUHOzhqyDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]\n [0.58587646 0.05527525 0.42864797]]", "desired_goal": "[[ 0.6220842 1.068417 -1.4702215 ]\n [ 0.15483746 -1.4727614 0.86085516]\n [-1.2542586 -0.02589198 0.03763275]\n [-1.0660863 0.12201279 -1.5541153 ]]", "observation": "[[0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]\n [0.58587646 0.05527525 0.42864797 0.07682984 0.00207169 0.02446471]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxsvAvadj6zwZkdU99KBrPdg+tL0Y9Vg+absvPdIUEz7V5Jk9TRMXPrZj8Dx2Zeg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09413867 0.02873404 0.10428066]\n [ 0.05752654 -0.08801049 0.21187246]\n [ 0.04290334 0.14363411 0.07514349]\n [ 0.14753456 0.02934442 0.11347477]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjrETXoKDHcCUhpRSlIwBbJRLMowBdJRHQMAygg3T/hl1fZQoaAZoCWgPQwgTZtr+lfUZwJSGlFKUaBVLMmgWR0DAMnbO1OTJdX2UKGgGaAloD0MIba0vEtpyIMCUhpRSlGgVSzJoFkdAwDJrZyuIRHV9lChoBmgJaA9DCF73ViQmWBzAlIaUUpRoFUsyaBZHQMAyX8n3L3d1fZQoaAZoCWgPQwjIe9XKhN8kwJSGlFKUaBVLMmgWR0DAMrQ5YHPedX2UKGgGaAloD0MIZhU2A1wAEcCUhpRSlGgVSzJoFkdAwDKo6GxlhHV9lChoBmgJaA9DCGzQl97+TBTAlIaUUpRoFUsyaBZHQMAynXyiEg51fZQoaAZoCWgPQwgTukvirLgbwJSGlFKUaBVLMmgWR0DAMpHuw5eadX2UKGgGaAloD0MIQuxMofPaFsCUhpRSlGgVSzJoFkdAwDLk3vx6OnV9lChoBmgJaA9DCJePpKSHgSDAlIaUUpRoFUsyaBZHQMAy2YuCf6J1fZQoaAZoCWgPQwh/2qhOBzIjwJSGlFKUaBVLMmgWR0DAMs4dMj/udX2UKGgGaAloD0MIghq+hXVTG8CUhpRSlGgVSzJoFkdAwDLCf+0gKXV9lChoBmgJaA9DCFu0AG2r2STAlIaUUpRoFUsyaBZHQMAzFVr6+Fl1fZQoaAZoCWgPQwgRww5j0m8kwJSGlFKUaBVLMmgWR0DAMwoNG3F2dX2UKGgGaAloD0MIo1pEFJN/IMCUhpRSlGgVSzJoFkdAwDL+n3L3bnV9lChoBmgJaA9DCCB7vfvjrRvAlIaUUpRoFUsyaBZHQMAy8v+GXX11fZQoaAZoCWgPQwiyRj1Eo4sWwJSGlFKUaBVLMmgWR0DAM0eff4yodX2UKGgGaAloD0MIFmu4yD01IMCUhpRSlGgVSzJoFkdAwDM8S39aU3V9lChoBmgJaA9DCKd0sP7PMRTAlIaUUpRoFUsyaBZHQMAzMN/OMVF1fZQoaAZoCWgPQwjC3y9mSwYjwJSGlFKUaBVLMmgWR0DAMyVFKCg9dX2UKGgGaAloD0MIIQTkS6gwJcCUhpRSlGgVSzJoFkdAwDN5C79Q43V9lChoBmgJaA9DCG4ZcJaSxRzAlIaUUpRoFUsyaBZHQMAzbbY9Pk91fZQoaAZoCWgPQwjzxklh3kMawJSGlFKUaBVLMmgWR0DAM2JJPIn0dX2UKGgGaAloD0MIvwrw3eZ9EsCUhpRSlGgVSzJoFkdAwDNWs7MgU3V9lChoBmgJaA9DCG9JDtjVdCTAlIaUUpRoFUsyaBZHQMAzq3irDIl1fZQoaAZoCWgPQwgpXI/C9TghwJSGlFKUaBVLMmgWR0DAM6Am9g4PdX2UKGgGaAloD0MI2ht8YTKVHcCUhpRSlGgVSzJoFkdAwDOUvAXVLHV9lChoBmgJaA9DCJ5i1SDMXRTAlIaUUpRoFUsyaBZHQMAziSIxgzB1fZQoaAZoCWgPQwh40sJlFaYZwJSGlFKUaBVLMmgWR0DAM95xYJVsdX2UKGgGaAloD0MIBJKwbyfRG8CUhpRSlGgVSzJoFkdAwDPTG6PKdXV9lChoBmgJaA9DCIP6ljldphvAlIaUUpRoFUsyaBZHQMAzx6yB06p1fZQoaAZoCWgPQwhz9s5oq2ISwJSGlFKUaBVLMmgWR0DAM7wPy08edX2UKGgGaAloD0MIJA1uawsvKMCUhpRSlGgVSzJoFkdAwDQPrfLs8nV9lChoBmgJaA9DCAwEATJ0DBLAlIaUUpRoFUsyaBZHQMA0BFqrR0F1fZQoaAZoCWgPQwi6LvzgfBocwJSGlFKUaBVLMmgWR0DAM/j3oLXudX2UKGgGaAloD0MI2jnNAu3mIMCUhpRSlGgVSzJoFkdAwDPtV9Wp63V9lChoBmgJaA9DCISB597D/SLAlIaUUpRoFUsyaBZHQMA0QSFwkxB1fZQoaAZoCWgPQwjkoe9uZYkTwJSGlFKUaBVLMmgWR0DANDXMMZxadX2UKGgGaAloD0MIlUkNbQDGGcCUhpRSlGgVSzJoFkdAwDQqYF7laXV9lChoBmgJaA9DCD6xTpXvOSPAlIaUUpRoFUsyaBZHQMA0HsTnJT51fZQoaAZoCWgPQwiQLcvXZVgcwJSGlFKUaBVLMmgWR0DANHK4QSSNdX2UKGgGaAloD0MIlPjcCfZPFMCUhpRSlGgVSzJoFkdAwDRnZpSJj3V9lChoBmgJaA9DCJj2zf3V0xnAlIaUUpRoFUsyaBZHQMA0W/kNnXd1fZQoaAZoCWgPQwjtfaoKDQwiwJSGlFKUaBVLMmgWR0DANFBdUsFudX2UKGgGaAloD0MILsvXZfiHKsCUhpRSlGgVSzJoFkdAwDSjzuF6A3V9lChoBmgJaA9DCIJzRpT2LirAlIaUUpRoFUsyaBZHQMA0mIKD0191fZQoaAZoCWgPQwjJOhxdpTsYwJSGlFKUaBVLMmgWR0DANI0Wj45+dX2UKGgGaAloD0MItcU1PpOlJcCUhpRSlGgVSzJoFkdAwDSBe/Ho5nV9lChoBmgJaA9DCA/vObAccRvAlIaUUpRoFUsyaBZHQMA01g2qDK51fZQoaAZoCWgPQwj203/W/DAowJSGlFKUaBVLMmgWR0DANMq0Sh8IdX2UKGgGaAloD0MIKo2Y2eeJIcCUhpRSlGgVSzJoFkdAwDS/VENOM3V9lChoBmgJaA9DCNs2jILg0SXAlIaUUpRoFUsyaBZHQMA0s7gTAWV1fZQoaAZoCWgPQwikiXeAJw0gwJSGlFKUaBVLMmgWR0DANQgvSMLndX2UKGgGaAloD0MIHTwTmiRWGsCUhpRSlGgVSzJoFkdAwDT82MKkVXV9lChoBmgJaA9DCIW1MXbCexjAlIaUUpRoFUsyaBZHQMA08WvB7/p1fZQoaAZoCWgPQwhnYORlTQwTwJSGlFKUaBVLMmgWR0DANOXhsImgdX2UKGgGaAloD0MIV0PiHkufGcCUhpRSlGgVSzJoFkdAwDU4o2GZeHV9lChoBmgJaA9DCAfTMHxE7CTAlIaUUpRoFUsyaBZHQMA1LU9ZA6d1fZQoaAZoCWgPQwgc7E0MyfkdwJSGlFKUaBVLMmgWR0DANSHkcS5BdX2UKGgGaAloD0MIsd6oFaafHsCUhpRSlGgVSzJoFkdAwDUWSFGoaXV9lChoBmgJaA9DCIZUUbzKWiDAlIaUUpRoFUsyaBZHQMA1aaTOgQJ1fZQoaAZoCWgPQwgpWyTtRp8SwJSGlFKUaBVLMmgWR0DANV5XGOuJdX2UKGgGaAloD0MI5gKXx5qhE8CUhpRSlGgVSzJoFkdAwDVS6iCaqnV9lChoBmgJaA9DCBnHSPYItRrAlIaUUpRoFUsyaBZHQMA1R08/2TR1fZQoaAZoCWgPQwgn+Kbps3MbwJSGlFKUaBVLMmgWR0DANZt5rxiHdX2UKGgGaAloD0MIqZ83FakwHMCUhpRSlGgVSzJoFkdAwDWQLeANG3V9lChoBmgJaA9DCD2CGylbvCXAlIaUUpRoFUsyaBZHQMA1hMH0K7Z1fZQoaAZoCWgPQwh39L9ci8YbwJSGlFKUaBVLMmgWR0DANXkmICU5dX2UKGgGaAloD0MIqySyD7I0I8CUhpRSlGgVSzJoFkdAwDXNVurIYHV9lChoBmgJaA9DCKYnLPGAsiHAlIaUUpRoFUsyaBZHQMA1wgWi1zB1fZQoaAZoCWgPQwitS43QzzQjwJSGlFKUaBVLMmgWR0DANbaXv6TGdX2UKGgGaAloD0MIP1jGhm6mG8CUhpRSlGgVSzJoFkdAwDWrCJoCdXV9lChoBmgJaA9DCBWRYRVvRBfAlIaUUpRoFUsyaBZHQMA1/hvaURp1fZQoaAZoCWgPQwjd66S+LD0kwJSGlFKUaBVLMmgWR0DANfLZnL7odX2UKGgGaAloD0MIu9IyUu9pFsCUhpRSlGgVSzJoFkdAwDXnb9qDb3V9lChoBmgJaA9DCHeBkgILWCDAlIaUUpRoFUsyaBZHQMA12+EZiux1fZQoaAZoCWgPQwhmEB/Y8b8dwJSGlFKUaBVLMmgWR0DANi9DIBBBdX2UKGgGaAloD0MI1Xd+UYL+HMCUhpRSlGgVSzJoFkdAwDYj92HLzXV9lChoBmgJaA9DCAdDHVa4DSTAlIaUUpRoFUsyaBZHQMA2GIc7yQR1fZQoaAZoCWgPQwjToGgewMIcwJSGlFKUaBVLMmgWR0DANgzqUu+RdX2UKGgGaAloD0MI34juWdegJ8CUhpRSlGgVSzJoFkdAwDZhQNTcZnV9lChoBmgJaA9DCJaS5SSUjhnAlIaUUpRoFUsyaBZHQMA2Ver+5vt1fZQoaAZoCWgPQwhJopdRLMcTwJSGlFKUaBVLMmgWR0DANkqAWi1zdX2UKGgGaAloD0MIIJp5ck3BGMCUhpRSlGgVSzJoFkdAwDY++RHPNXV9lChoBmgJaA9DCClC6nb25RfAlIaUUpRoFUsyaBZHQMA2ks052hZ1fZQoaAZoCWgPQwgmb4CZ70AbwJSGlFKUaBVLMmgWR0DANoejIq9XdX2UKGgGaAloD0MIo+iBj8HiJMCUhpRSlGgVSzJoFkdAwDZ8M+/xlXV9lChoBmgJaA9DCKsGYW73KiXAlIaUUpRoFUsyaBZHQMA2cJNKyv91fZQoaAZoCWgPQwjqk9xhE7ElwJSGlFKUaBVLMmgWR0DANsOVE/jbdX2UKGgGaAloD0MIp7Io7KIIFcCUhpRSlGgVSzJoFkdAwDa4QOFxn3V9lChoBmgJaA9DCLOVl/xP/hPAlIaUUpRoFUsyaBZHQMA2rNUOuq51fZQoaAZoCWgPQwiU+UffpBkWwJSGlFKUaBVLMmgWR0DANqFe8f3fdX2UKGgGaAloD0MIH9rHCn4rJcCUhpRSlGgVSzJoFkdAwDb0nLq2SnV9lChoBmgJaA9DCCV2bW+31CHAlIaUUpRoFUsyaBZHQMA26UlAu7J1fZQoaAZoCWgPQwh7EW3H1K0VwJSGlFKUaBVLMmgWR0DANt3juKGddX2UKGgGaAloD0MIGXCWkuUkGMCUhpRSlGgVSzJoFkdAwDbSR2bG3nV9lChoBmgJaA9DCOXRjbCoOBTAlIaUUpRoFUsyaBZHQMA3JqGcnVp1fZQoaAZoCWgPQwhKz/QSY7ElwJSGlFKUaBVLMmgWR0DANxtYB/7SdX2UKGgGaAloD0MIvY+jObIyFcCUhpRSlGgVSzJoFkdAwDcP6nBLwnV9lChoBmgJaA9DCOsZwjHLjhLAlIaUUpRoFUsyaBZHQMA3BEzoEB91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8a96703820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8a966eade0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674406599196260386, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/i4O8Ph2rsbv7kgo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVah0vXOvSL8LdNS8SAkTP99vkz4+Cxc+3BZFP0Tqtr+EuMO/hNVnP7+yrr5cuDE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyLg7w+Hauxu/uSCj8ICxI8S58gu704GzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]\n [ 0.3681911 -0.00542201 0.54130524]]", "desired_goal": "[[-0.05973085 -0.78392714 -0.02593424]\n [ 0.5743604 0.28796288 0.14750382]\n [ 0.76988006 -1.4290242 -1.5290685 ]\n [ 0.90560174 -0.34120747 0.69421935]]", "observation": "[[ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]\n [ 0.3681911 -0.00542201 0.54130524 0.00891376 -0.0024509 0.00947398]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHoZrvSujDz4ShcI9PPSivNBU8b3Et4E+2g/kvbrD5zzl/VU9fnt/u4p8rL0Om9w8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05750095 0.14027087 0.09498037]\n [-0.01989185 -0.11783755 0.25335515]\n [-0.11135836 0.02829157 0.05224409]\n [-0.00389835 -0.08422191 0.0269294 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfGEyVTAqBsCUhpRSlIwBbJRLMowBdJRHQKHXuQjlgc91fZQoaAZoCWgPQwhI4XoUrocEwJSGlFKUaBVLMmgWR0Ch14k7wKBvdX2UKGgGaAloD0MIAb7bvHESAsCUhpRSlGgVSzJoFkdAoddaeEqUeXV9lChoBmgJaA9DCCCaeXJNwQfAlIaUUpRoFUsyaBZHQKHXLF3IMjN1fZQoaAZoCWgPQwh7TKQ0m8cLwJSGlFKUaBVLMmgWR0Ch2MtGus90dX2UKGgGaAloD0MIVwbVBifCBMCUhpRSlGgVSzJoFkdAodibSCvovHV9lChoBmgJaA9DCKtefqfJTPy/lIaUUpRoFUsyaBZHQKHYbFvQ4S91fZQoaAZoCWgPQwi/7nTniWf6v5SGlFKUaBVLMmgWR0Ch2D6iTMaCdX2UKGgGaAloD0MIaykg7X9wEMCUhpRSlGgVSzJoFkdAodm7Ackt3HV9lChoBmgJaA9DCFXCE3r9KQjAlIaUUpRoFUsyaBZHQKHZiw8nuzB1fZQoaAZoCWgPQwjFknL3OX4FwJSGlFKUaBVLMmgWR0Ch2VwvYe1bdX2UKGgGaAloD0MIJ0pCIm2TEMCUhpRSlGgVSzJoFkdAodkr1GsmwHV9lChoBmgJaA9DCBOB6h9EUgjAlIaUUpRoFUsyaBZHQKHaqcy31Bd1fZQoaAZoCWgPQwhn74y2KskLwJSGlFKUaBVLMmgWR0Ch2nmt6ol2dX2UKGgGaAloD0MIexAC8iW0D8CUhpRSlGgVSzJoFkdAodpK24NI9XV9lChoBmgJaA9DCKsGYW73IhTAlIaUUpRoFUsyaBZHQKHaGmw7kn11fZQoaAZoCWgPQwjWq8jogGQMwJSGlFKUaBVLMmgWR0Ch25hF3IMjdX2UKGgGaAloD0MIUkgyq3cYD8CUhpRSlGgVSzJoFkdAodtoQjD8+HV9lChoBmgJaA9DCAMixJWzFwnAlIaUUpRoFUsyaBZHQKHbOUTL4et1fZQoaAZoCWgPQwi28/3UeAkDwJSGlFKUaBVLMmgWR0Ch2wjhtLtedX2UKGgGaAloD0MIgsR29wBdB8CUhpRSlGgVSzJoFkdAodyTZQHiWHV9lChoBmgJaA9DCPmekQiNQA7AlIaUUpRoFUsyaBZHQKHcY2xY7q91fZQoaAZoCWgPQwjKU1bT9UT1v5SGlFKUaBVLMmgWR0Ch3DUKRdQgdX2UKGgGaAloD0MI+py7XS+NB8CUhpRSlGgVSzJoFkdAodwEqe9SM3V9lChoBmgJaA9DCGy1h71QQPy/lIaUUpRoFUsyaBZHQKHdhX+VC5V1fZQoaAZoCWgPQwhI3jmUoaoJwJSGlFKUaBVLMmgWR0Ch3VW1lXijdX2UKGgGaAloD0MI5X/yd+9IBcCUhpRSlGgVSzJoFkdAod0mqzZ6EHV9lChoBmgJaA9DCBrh7UEIqAPAlIaUUpRoFUsyaBZHQKHc9lGPPs11fZQoaAZoCWgPQwhUqkTZW5oRwJSGlFKUaBVLMmgWR0Ch3m0B4lhPdX2UKGgGaAloD0MI7dgIxOv6DcCUhpRSlGgVSzJoFkdAod49DjR2KXV9lChoBmgJaA9DCExr09heawTAlIaUUpRoFUsyaBZHQKHeDj1f3N91fZQoaAZoCWgPQwjqXif1Zen/v5SGlFKUaBVLMmgWR0Ch3d27FsHjdX2UKGgGaAloD0MIMILGTKKeCMCUhpRSlGgVSzJoFkdAod9ZaePJaXV9lChoBmgJaA9DCF+3CIz1zQnAlIaUUpRoFUsyaBZHQKHfKYl6Z6V1fZQoaAZoCWgPQwgxmL9C5joQwJSGlFKUaBVLMmgWR0Ch3vqW1MM7dX2UKGgGaAloD0MIJEVkWMW7DsCUhpRSlGgVSzJoFkdAod7KVMVUM3V9lChoBmgJaA9DCEGd8uhGWP6/lIaUUpRoFUsyaBZHQKHgVuwX6691fZQoaAZoCWgPQwh7TKQ0mycJwJSGlFKUaBVLMmgWR0Ch4CcLKFIvdX2UKGgGaAloD0MIs3xdhv80CsCUhpRSlGgVSzJoFkdAod/4G+sYEXV9lChoBmgJaA9DCPXWwFYJtgPAlIaUUpRoFUsyaBZHQKHfx+Haewt1fZQoaAZoCWgPQwhQi8HDtM8IwJSGlFKUaBVLMmgWR0Ch4VTOxB3SdX2UKGgGaAloD0MI275H/fUqD8CUhpRSlGgVSzJoFkdAoeEk3l0YCXV9lChoBmgJaA9DCCmXxi+8kgbAlIaUUpRoFUsyaBZHQKHg9gbZOBV1fZQoaAZoCWgPQwi5Us+CUB4PwJSGlFKUaBVLMmgWR0Ch4MXU6PsBdX2UKGgGaAloD0MI9MDHYMXJCMCUhpRSlGgVSzJoFkdAoeI/c1wYL3V9lChoBmgJaA9DCPskd9hEBhDAlIaUUpRoFUsyaBZHQKHiD4JNTLp1fZQoaAZoCWgPQwigihu3mH8HwJSGlFKUaBVLMmgWR0Ch4eDAaef7dX2UKGgGaAloD0MIiDB+GvemCcCUhpRSlGgVSzJoFkdAoeGwcNpdr3V9lChoBmgJaA9DCBjQC3cuTAbAlIaUUpRoFUsyaBZHQKHjMbzbvgF1fZQoaAZoCWgPQwiASSpTzEH7v5SGlFKUaBVLMmgWR0Ch4wIEbHZLdX2UKGgGaAloD0MI8PyiBP0FCMCUhpRSlGgVSzJoFkdAoeLTS1E3KnV9lChoBmgJaA9DCAH20akrXwzAlIaUUpRoFUsyaBZHQKHioxlg+hZ1fZQoaAZoCWgPQwh47dKGw7IJwJSGlFKUaBVLMmgWR0Ch5CPK+zt1dX2UKGgGaAloD0MIVOBkG7gDAcCUhpRSlGgVSzJoFkdAoePz5uZTh3V9lChoBmgJaA9DCAUYlj/f1gXAlIaUUpRoFUsyaBZHQKHjxQoCuEF1fZQoaAZoCWgPQwjba0HvjcEAwJSGlFKUaBVLMmgWR0Ch45S+g13udX2UKGgGaAloD0MIIAiQoWOHA8CUhpRSlGgVSzJoFkdAoeUTSofjj3V9lChoBmgJaA9DCKosCrsoevi/lIaUUpRoFUsyaBZHQKHk428Zk091fZQoaAZoCWgPQwhr1EM0ukMIwJSGlFKUaBVLMmgWR0Ch5LSS/0uldX2UKGgGaAloD0MIxCEbSBe7AMCUhpRSlGgVSzJoFkdAoeSESdvsJXV9lChoBmgJaA9DCGKCGr6F1QrAlIaUUpRoFUsyaBZHQKHmARTS9dx1fZQoaAZoCWgPQwjf3coSnWUFwJSGlFKUaBVLMmgWR0Ch5dExqO94dX2UKGgGaAloD0MIhJ84gH7fB8CUhpRSlGgVSzJoFkdAoeWiSkj5bnV9lChoBmgJaA9DCPW+8bVntgHAlIaUUpRoFUsyaBZHQKHlcgdOqNp1fZQoaAZoCWgPQwgz/n3GhQMFwJSGlFKUaBVLMmgWR0Ch5wR0U47zdX2UKGgGaAloD0MI3Vz8bU9QB8CUhpRSlGgVSzJoFkdAoebUXFcY7HV9lChoBmgJaA9DCD7o2az63P+/lIaUUpRoFUsyaBZHQKHmpg1FYuF1fZQoaAZoCWgPQwjJ6ev5muULwJSGlFKUaBVLMmgWR0Ch5neXqqwRdX2UKGgGaAloD0MIiLmkaruJA8CUhpRSlGgVSzJoFkdAoef8jeKsMnV9lChoBmgJaA9DCCzwFd16LQLAlIaUUpRoFUsyaBZHQKHnzQAMlTp1fZQoaAZoCWgPQwjhJw6g3/cEwJSGlFKUaBVLMmgWR0Ch554Xwb2ldX2UKGgGaAloD0MI71NVaCC2DsCUhpRSlGgVSzJoFkdAoedtv/BFeHV9lChoBmgJaA9DCPHW+bfLvgDAlIaUUpRoFUsyaBZHQKHo7003wTd1fZQoaAZoCWgPQwirXRPSGoMAwJSGlFKUaBVLMmgWR0Ch6L9dNWU9dX2UKGgGaAloD0MITMPwETEFA8CUhpRSlGgVSzJoFkdAoeiQdIXj2nV9lChoBmgJaA9DCIPg8e1dowDAlIaUUpRoFUsyaBZHQKHoYDdxhlV1fZQoaAZoCWgPQwgkJT0MrY4FwJSGlFKUaBVLMmgWR0Ch6eFwkxATdX2UKGgGaAloD0MI5C8t6pP8BcCUhpRSlGgVSzJoFkdAoemxjOLR8nV9lChoBmgJaA9DCIrlllZDogPAlIaUUpRoFUsyaBZHQKHpgqm0mdB1fZQoaAZoCWgPQwhHqu/8oiQKwJSGlFKUaBVLMmgWR0Ch6VJSaVlgdX2UKGgGaAloD0MIM6mhDcCGAsCUhpRSlGgVSzJoFkdAoerrL8rI53V9lChoBmgJaA9DCAvsMZHSDATAlIaUUpRoFUsyaBZHQKHquzHjp9t1fZQoaAZoCWgPQwhoP1JEhjUAwJSGlFKUaBVLMmgWR0Ch6oxZEDyOdX2UKGgGaAloD0MI6dFUT+a/AcCUhpRSlGgVSzJoFkdAoepcC/47BHV9lChoBmgJaA9DCM1YNJ2djADAlIaUUpRoFUsyaBZHQKHr6eo1k2B1fZQoaAZoCWgPQwitNZTai6j3v5SGlFKUaBVLMmgWR0Ch67npjc2zdX2UKGgGaAloD0MI02ndBrWf/L+UhpRSlGgVSzJoFkdAoeuLZg5R0nV9lChoBmgJaA9DCO571F+vsAHAlIaUUpRoFUsyaBZHQKHrXQSi/PB1fZQoaAZoCWgPQwjXT/9Z8+MAwJSGlFKUaBVLMmgWR0Ch7PsCT2WZdX2UKGgGaAloD0MIYkz6eyk8/L+UhpRSlGgVSzJoFkdAoezLot+TeXV9lChoBmgJaA9DCDmZuFUQQ/+/lIaUUpRoFUsyaBZHQKHsnM3ZPEd1fZQoaAZoCWgPQwj7yRgfZk8CwJSGlFKUaBVLMmgWR0Ch7GzMzMzNdX2UKGgGaAloD0MIbjXrjO/rAsCUhpRSlGgVSzJoFkdAoe3vJRwZO3V9lChoBmgJaA9DCMVU+glnFwHAlIaUUpRoFUsyaBZHQKHtv0NBnjB1fZQoaAZoCWgPQwhq9dVVgfoDwJSGlFKUaBVLMmgWR0Ch7ZBvaURndX2UKGgGaAloD0MILXjRV5BmBcCUhpRSlGgVSzJoFkdAoe1gB1cMVnV9lChoBmgJaA9DCDY+k/3zVATAlIaUUpRoFUsyaBZHQKHu4mKIi1R1fZQoaAZoCWgPQwhU46WbxAADwJSGlFKUaBVLMmgWR0Ch7rJiAlOXdX2UKGgGaAloD0MIY9NKIZDrCcCUhpRSlGgVSzJoFkdAoe6DaZhKDnV9lChoBmgJaA9DCL73N2ivngXAlIaUUpRoFUsyaBZHQKHuUzBRAKR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -7.844468362256885, "std_reward": 1.7646601956029837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T09:55:14.292254"}
 
1
+ {"mean_reward": -2.3097092459443958, "std_reward": 0.32846907884603976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T17:34:55.763190"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:80cb10a5c7e3d8fea84a569a76846335901a191e33311be26b387500e55ffcee
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8467ee024d32789dc34b589d01f2d154c956263defe817aa83624a564942863
3
  size 3056