bipulai commited on
Commit
159012f
1 Parent(s): 6ede317

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -3
README.md CHANGED
@@ -15,22 +15,31 @@ tags:
15
 
16
  # Model Card for Model ID
17
 
18
- <!-- Provide a quick summary of what the model is/does. -->
19
 
20
  This is the fine tuned model which got further trained on the top of base model Mistral-7B-v0.1 on the Skillate customer support dataset.
21
  The fine-tuned model understands the nuances about how the Skillate product works, its navigation, features, monologue and respond accordingly.
22
 
23
 
24
 
 
25
 
 
26
 
 
 
 
 
 
 
 
 
27
 
28
- ## Instruction format
29
 
30
- In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens.
31
 
32
  ## How to Get Started with the Model
33
 
 
 
34
  from transformers import AutoTokenizer,AutoModelForCausalLM, BitsAndBytesConfig
35
 
36
 
@@ -48,7 +57,14 @@ base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct
48
  peft_model = PeftModel.from_pretrained(base_model, "bipulai/mistral-7b-v1-skillate-helpdesk",device_map="auto")
49
  peft_model.merge_and_unload()
50
 
 
 
 
 
 
 
51
  tokenize = tokenizer(text = [prompt],return_tensors = "pt")
52
  x = peft_model.generate(input_ids = tokenize["input_ids"].to(device),attention_mask = tokenize["attention_mask"].to(device),max_length = 500)
53
  response = tokenizer.batch_decode(x,skip_special_tokens=True)
54
  print(f"Model Output: {reponse}\n\n")
 
 
15
 
16
  # Model Card for Model ID
17
 
 
18
 
19
  This is the fine tuned model which got further trained on the top of base model Mistral-7B-v0.1 on the Skillate customer support dataset.
20
  The fine-tuned model understands the nuances about how the Skillate product works, its navigation, features, monologue and respond accordingly.
21
 
22
 
23
 
24
+ # Instruction Fine-Tuning Example
25
 
26
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.
27
 
28
+ E.g.
29
+
30
+ ```python
31
+ prompt = "Answer the below query as a customer support assistant about Skillate Product: "
32
+ question = "What are the different ways to log in to the product?"
33
+ answer = "You can log in to Skillate in any of the three methods here: [https://help.skillate.com/en/support/solutions/articles/82000881022](https://help.skillate.com/en/support/solutions/articles/82000881022) The conventional method of entering a username and password Using SSO (Single Sign-On) login via Google Using SSO (Single Sign-On) login via Microsoft"
34
+ text = f"<s>[INST] {prompt} {question} [/INST] {answer} </s>"
35
+ ```
36
 
 
37
 
 
38
 
39
  ## How to Get Started with the Model
40
 
41
+ ```python
42
+
43
  from transformers import AutoTokenizer,AutoModelForCausalLM, BitsAndBytesConfig
44
 
45
 
 
57
  peft_model = PeftModel.from_pretrained(base_model, "bipulai/mistral-7b-v1-skillate-helpdesk",device_map="auto")
58
  peft_model.merge_and_unload()
59
 
60
+
61
+ '''Evaluating on the helpdesk related query'''
62
+ system_prompt = "Answer the below query as a customer support assistant about Skillate Product: "
63
+ question = "How to configure the job approval chain?"
64
+ prompt = f"<s>[INST] {system_prompt} {question} [/INST]"
65
+
66
  tokenize = tokenizer(text = [prompt],return_tensors = "pt")
67
  x = peft_model.generate(input_ids = tokenize["input_ids"].to(device),attention_mask = tokenize["attention_mask"].to(device),max_length = 500)
68
  response = tokenizer.batch_decode(x,skip_special_tokens=True)
69
  print(f"Model Output: {reponse}\n\n")
70
+ ```