checkpt9 commited on
Commit
5fb2bee
1 Parent(s): d7e1f88

Add README

Browse files
Files changed (2) hide show
  1. README.md +68 -1
  2. logo.png +0 -0
README.md CHANGED
@@ -1,8 +1,75 @@
1
  ---
2
  tags:
3
- - image-classification
4
  - timm
 
 
 
 
 
 
5
  library_name: timm
6
  license: apache-2.0
7
  ---
 
8
  # Model card for H-optimus-0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
+ - image feature extraction
4
  - timm
5
+ - pathology
6
+ - histology
7
+ - medical imaging
8
+ - self-supervised learning
9
+ - vision transformer
10
+ - foundation model
11
  library_name: timm
12
  license: apache-2.0
13
  ---
14
+
15
  # Model card for H-optimus-0
16
+
17
+ <p align="center">
18
+ <img src="./logo.png" width="500" height="180" />
19
+ </p>
20
+
21
+ `H-optimus-0` is an open-source foundation model for histology, developed by [Bioptimus](https://www.bioptimus.com/).
22
+ The model is a 1.1B parameter vision transformer trained on a proprietary collection of more than 500,000 H&E stained whole slide histology images.
23
+ For more information, please refer to our GitHub repository [here](https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0?utm_source=owkin&utm_medium=referral&utm_campaign=h-bioptimus-o).
24
+
25
+ `H-optimus-0` can be used to extract powerful features from histology images for various downstream applications, such as mutation prediction, survival analysis, or tissue classification.
26
+
27
+ ## How to use it to extract features.
28
+
29
+ The code below can be used to run inference; `H-optimus-0` expects images of size 224x224 that were extracted at 0.5 microns per pixel.
30
+ ```python
31
+ from huggingface_hub import login
32
+ import torch
33
+ import timm
34
+ from torchvision import transforms
35
+
36
+ # Login to the Hugging Face hub, using your user access token that can be found here:
37
+ # https://huggingface.co/settings/tokens.
38
+ login()
39
+
40
+ model = timm.create_model(
41
+ "hf-hub:bioptimus/H-optimus-0", pretrained=True, init_values=1e-5, dynamic_img_size=False
42
+ )
43
+ model.to("cuda")
44
+ model.eval()
45
+
46
+ transform = transforms.Compose([
47
+ transforms.ToTensor(),
48
+ transforms.Normalize(
49
+ mean=(0.707223, 0.578729, 0.703617),
50
+ std=(0.211883, 0.230117, 0.177517)
51
+ ),
52
+ ])
53
+
54
+ input = torch.rand(3, 224, 224)
55
+ input = transforms.ToPILImage()(input)
56
+
57
+ # We recommend using mixed precision for faster inference.
58
+ with torch.autocast(device_type="cuda", dtype=torch.float16):
59
+ with torch.inference_mode():
60
+ features = model(transform(input).unsqueeze(0).to("cuda"))
61
+
62
+ assert features.shape == (1, 1536)
63
+ ```
64
+
65
+ ## BibTeX entry and citation info.
66
+
67
+ If you find this repository useful, please consider citing our work:
68
+ ```
69
+ @software{hoptimus0,
70
+ author = {Saillard, Charlie and Jenatton, Rodolphe and Llinares-López, Felipe and Mariet, Zelda and Cahané, David and Durand, Eric and Vert, Jean-Philippe},
71
+ title = {H-optimus-0},
72
+ url = {https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0},
73
+ year = {2024},
74
+ }
75
+ ```
logo.png ADDED