--- license: apache-2.0 base_model: OuteAI/Lite-Oute-2-Mamba2Attn-Base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mambaformer results: [] --- [Visualize in Weights & Biases](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/vbdymxf4) # mambaformer This model is a fine-tuned version of [OuteAI/Lite-Oute-2-Mamba2Attn-Base](https://huggingface.co./OuteAI/Lite-Oute-2-Mamba2Attn-Base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1639 - Accuracy: 0.9607 - Precision: 0.9628 - Recall: 0.9607 - F1: 0.9613 - Auroc: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - label_smoothing_factor: 0.03 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.8973 | 0.0988 | 128 | 0.6661 | 0.6897 | 0.6807 | 0.6897 | 0.6850 | 0.5552 | | 0.5525 | 0.1976 | 256 | 0.4682 | 0.7898 | 0.7526 | 0.7898 | 0.7413 | 0.7643 | | 0.4086 | 0.2965 | 384 | 0.3500 | 0.8523 | 0.8452 | 0.8523 | 0.8472 | 0.9024 | | 0.3067 | 0.3953 | 512 | 0.2573 | 0.9107 | 0.9085 | 0.9107 | 0.9091 | 0.9620 | | 0.2477 | 0.4941 | 640 | 0.2234 | 0.9309 | 0.9298 | 0.9309 | 0.9288 | 0.9761 | | 0.2283 | 0.5929 | 768 | 0.2074 | 0.9404 | 0.9396 | 0.9404 | 0.9398 | 0.9804 | | 0.2035 | 0.6918 | 896 | 0.1875 | 0.9529 | 0.9530 | 0.9529 | 0.9530 | 0.9853 | | 0.1963 | 0.7906 | 1024 | 0.1809 | 0.9464 | 0.9458 | 0.9464 | 0.9460 | 0.9867 | | 0.1798 | 0.8894 | 1152 | 0.1638 | 0.9601 | 0.9610 | 0.9601 | 0.9604 | 0.9900 | | 0.1749 | 0.9882 | 1280 | 0.1652 | 0.9583 | 0.9579 | 0.9583 | 0.9581 | 0.9894 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.4.0+cu124 - Datasets 2.19.1 - Tokenizers 0.19.1