binh230 commited on
Commit
ec7e068
·
verified ·
1 Parent(s): 810ccd4

Model save

Browse files
Files changed (1) hide show
  1. README.md +21 -35
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: binh230/mambaformer
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -16,19 +16,17 @@ model-index:
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/z6i92ua2)
20
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/g6m1faks)
21
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/6afk83hw)
22
  # mambaformer
23
 
24
- This model is a fine-tuned version of [binh230/mambaformer](https://huggingface.co/binh230/mambaformer) on the None dataset.
25
  It achieves the following results on the evaluation set:
26
- - Loss: 0.4950
27
- - Accuracy: 0.7747
28
- - Precision: 0.8314
29
- - Recall: 0.7747
30
- - F1: 0.7647
31
- - Auroc: 0.9429
32
 
33
  ## Model description
34
 
@@ -48,42 +46,30 @@ More information needed
48
 
49
  The following hyperparameters were used during training:
50
  - learning_rate: 5e-05
51
- - train_batch_size: 64
52
  - eval_batch_size: 4
53
  - seed: 42
54
  - gradient_accumulation_steps: 4
55
- - total_train_batch_size: 256
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
  - num_epochs: 1
59
- - mixed_precision_training: Native AMP
60
  - label_smoothing_factor: 0.03
61
 
62
  ### Training results
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
65
  |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
66
- | 0.6026 | 0.0471 | 256 | 0.5927 | 0.6776 | 0.7982 | 0.6776 | 0.6414 | 0.9217 |
67
- | 0.3481 | 0.0941 | 512 | 0.4428 | 0.8167 | 0.8239 | 0.8167 | 0.8157 | 0.9015 |
68
- | 0.2434 | 0.1412 | 768 | 0.4749 | 0.7833 | 0.8043 | 0.7833 | 0.7795 | 0.8934 |
69
- | 0.1975 | 0.1882 | 1024 | 0.5786 | 0.7304 | 0.7949 | 0.7304 | 0.7149 | 0.8979 |
70
- | 0.1749 | 0.2353 | 1280 | 0.6214 | 0.7157 | 0.7952 | 0.7157 | 0.6952 | 0.9004 |
71
- | 0.1644 | 0.2824 | 1536 | 0.6323 | 0.7107 | 0.7984 | 0.7107 | 0.6877 | 0.9123 |
72
- | 0.1556 | 0.3294 | 1792 | 0.6491 | 0.7046 | 0.7990 | 0.7046 | 0.6793 | 0.9161 |
73
- | 0.1476 | 0.3765 | 2048 | 0.6989 | 0.6884 | 0.7955 | 0.6884 | 0.6573 | 0.9203 |
74
- | 0.1466 | 0.4235 | 2304 | 0.6633 | 0.7014 | 0.8016 | 0.7014 | 0.6744 | 0.9241 |
75
- | 0.1405 | 0.4706 | 2560 | 0.6076 | 0.7229 | 0.8071 | 0.7229 | 0.7026 | 0.9250 |
76
- | 0.1399 | 0.5177 | 2816 | 0.6221 | 0.7164 | 0.8042 | 0.7164 | 0.6943 | 0.9248 |
77
- | 0.135 | 0.5647 | 3072 | 0.6249 | 0.7150 | 0.8064 | 0.7150 | 0.6920 | 0.9290 |
78
- | 0.1339 | 0.6118 | 3328 | 0.6109 | 0.7233 | 0.8108 | 0.7233 | 0.7024 | 0.9340 |
79
- | 0.1297 | 0.6589 | 3584 | 0.5931 | 0.7306 | 0.8127 | 0.7306 | 0.7117 | 0.9360 |
80
- | 0.1298 | 0.7059 | 3840 | 0.5644 | 0.7439 | 0.8170 | 0.7439 | 0.7282 | 0.9357 |
81
- | 0.1275 | 0.7530 | 4096 | 0.5526 | 0.7475 | 0.8209 | 0.7475 | 0.7322 | 0.9416 |
82
- | 0.1268 | 0.8000 | 4352 | 0.5564 | 0.7470 | 0.8203 | 0.7470 | 0.7317 | 0.9412 |
83
- | 0.1235 | 0.8471 | 4608 | 0.5439 | 0.7537 | 0.8238 | 0.7537 | 0.7396 | 0.9436 |
84
- | 0.1231 | 0.8942 | 4864 | 0.5051 | 0.7693 | 0.8292 | 0.7693 | 0.7583 | 0.9446 |
85
- | 0.1222 | 0.9412 | 5120 | 0.5254 | 0.7611 | 0.8241 | 0.7611 | 0.7488 | 0.9405 |
86
- | 0.1198 | 0.9883 | 5376 | 0.5439 | 0.7534 | 0.8230 | 0.7534 | 0.7394 | 0.9408 |
87
 
88
 
89
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: OuteAI/Lite-Oute-2-Mamba2Attn-Base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/vbdymxf4)
 
 
20
  # mambaformer
21
 
22
+ This model is a fine-tuned version of [OuteAI/Lite-Oute-2-Mamba2Attn-Base](https://huggingface.co/OuteAI/Lite-Oute-2-Mamba2Attn-Base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1639
25
+ - Accuracy: 0.9607
26
+ - Precision: 0.9628
27
+ - Recall: 0.9607
28
+ - F1: 0.9613
29
+ - Auroc: 0.9925
30
 
31
  ## Model description
32
 
 
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 5e-05
49
+ - train_batch_size: 32
50
  - eval_batch_size: 4
51
  - seed: 42
52
  - gradient_accumulation_steps: 4
53
+ - total_train_batch_size: 128
54
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
  - lr_scheduler_type: linear
56
  - num_epochs: 1
 
57
  - label_smoothing_factor: 0.03
58
 
59
  ### Training results
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
62
  |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
63
+ | 0.8973 | 0.0988 | 128 | 0.6661 | 0.6897 | 0.6807 | 0.6897 | 0.6850 | 0.5552 |
64
+ | 0.5525 | 0.1976 | 256 | 0.4682 | 0.7898 | 0.7526 | 0.7898 | 0.7413 | 0.7643 |
65
+ | 0.4086 | 0.2965 | 384 | 0.3500 | 0.8523 | 0.8452 | 0.8523 | 0.8472 | 0.9024 |
66
+ | 0.3067 | 0.3953 | 512 | 0.2573 | 0.9107 | 0.9085 | 0.9107 | 0.9091 | 0.9620 |
67
+ | 0.2477 | 0.4941 | 640 | 0.2234 | 0.9309 | 0.9298 | 0.9309 | 0.9288 | 0.9761 |
68
+ | 0.2283 | 0.5929 | 768 | 0.2074 | 0.9404 | 0.9396 | 0.9404 | 0.9398 | 0.9804 |
69
+ | 0.2035 | 0.6918 | 896 | 0.1875 | 0.9529 | 0.9530 | 0.9529 | 0.9530 | 0.9853 |
70
+ | 0.1963 | 0.7906 | 1024 | 0.1809 | 0.9464 | 0.9458 | 0.9464 | 0.9460 | 0.9867 |
71
+ | 0.1798 | 0.8894 | 1152 | 0.1638 | 0.9601 | 0.9610 | 0.9601 | 0.9604 | 0.9900 |
72
+ | 0.1749 | 0.9882 | 1280 | 0.1652 | 0.9583 | 0.9579 | 0.9583 | 0.9581 | 0.9894 |
 
 
 
 
 
 
 
 
 
 
 
73
 
74
 
75
  ### Framework versions