Initial training commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 293.36 +/- 13.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e39af7b0e00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e39af7b0ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e39af7b0f40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e39af7b0fe0>", "_build": "<function ActorCriticPolicy._build at 0x7e39af7b1080>", "forward": "<function ActorCriticPolicy.forward at 0x7e39af7b1120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e39af7b11c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e39af7b1260>", "_predict": "<function ActorCriticPolicy._predict at 0x7e39af7b1300>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e39af7b13a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e39af7b1440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e39af7b14e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e39af711b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5046272, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738183446201238710, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYbmD1DVI0/8yziPWKy5L5GD/I91a2HvQAAAAAAAAAAs+g8PdZwvD+aq90+JdIbPgSCAjzREwE+AAAAAAAAAAAzoXM8Wwl2PwLYwz2me/y+gi8ZPZO1b7sAAAAAAAAAABrXFb6DqPo+c9lxPv/Hxb5M8mM8ugbwPQAAAAAAAAAAmrCkPIBXoj7j6Kg980/ZvoeVoD3The49AAAAAAAAAABmqw09BWXku8eogjznA1Y8gzgvvSvnNj0AAIA/AACAP019Lj3HwFs/WA/dPGVd7741rR49oiwKvAAAAAAAAAAAGkfGvUUiTT/yPuK9HGHuvuZEZb4yJbc8AAAAAAAAAABmu6G8FLaTunCBOzsT1G45Z4gGu1Mb27kAAIA/AACAP80g7jv2dHm6Wo1Qua3NYjvAjke7KB9sPAAAgD8AAIA/DRilPRRAcj52Ik++ysXBvh0jLbwyfDq9AAAAAAAAAACzDue9hPspPz2PmT1Cbsm+qli0vSZwvDwAAAAAAAAAAJpN0T0cRmg/DowDPmqo9b4dqEE+kTsGuwAAAAAAAAAATZRCvUgPorq6rS+z7Hc5sIMBa7qtjc8zAACAPwAAgD9Npl+9/ekbPm4BaD5j27K+bMT9PThcTD0AAAAAAAAAAOYlCz3Un+g+78SwvVSKzL4xV1e8KehCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCATzZpSJmMAWyUS/SMAXSUR0CruRSmqHXVdX2UKGgGR0Bw7cakyk9EaAdL3GgIR0CruS+GO+7EdX2UKGgGR0BwsKD28IzFaAdL+GgIR0CruX8kUsWgdX2UKGgGR0Bwtik/KQq7aAdL42gIR0CruX7WmP5pdX2UKGgGR0BwxEBmwqy4aAdL+WgIR0CruYpCSidrdX2UKGgGR0ByFOPhhpg1aAdL5mgIR0Crud7uDzy0dX2UKGgGR0BzSOnDR+jNaAdLzmgIR0CrugPZh8YydX2UKGgGR0Bybl+jM3ZPaAdL12gIR0CruhdqcmShdX2UKGgGR0BymCwQlKK6aAdL4mgIR0CrujocaOxTdX2UKGgGR0BzYxMcp9ZzaAdLxmgIR0Cruk7RWtEHdX2UKGgGR0Bw4BuwX668aAdL0WgIR0CrupyJ0nw5dX2UKGgGR0BzVMUHpr1vaAdL8GgIR0CruuTtsvZidX2UKGgGR0BxTo8p1A7gaAdL4WgIR0CruunskY4ydX2UKGgGR0ByAxyT6i0waAdLy2gIR0Cruv1gpjMFdX2UKGgGR0ByI1z1bqyGaAdL4mgIR0Cru0nLq2SddX2UKGgGR0BuvnSOR1YAaAdL12gIR0Cru2ja4+bFdX2UKGgGR0BuuDKRuCPIaAdL12gIR0Cru21Aqur7dX2UKGgGR0Bzse9lEqlQaAdL7GgIR0Cru8Rt52QodX2UKGgGR0ByOw4n4O+aaAdL1mgIR0Cru9YkmhM8dX2UKGgGR0BvWjUTcqOMaAdL6GgIR0CrvA1Muez2dX2UKGgGR0Bynecx0uDjaAdL7GgIR0CrvCPqcEvCdX2UKGgGR0BxUBeUpuuSaAdL1mgIR0CrvD6kRBeHdX2UKGgGR0Bx4UOy3Td+aAdL0WgIR0CrvGdsJpnIdX2UKGgGR0BxgJKVY6n0aAdL42gIR0CrvIWhAWzodX2UKGgGR0Bx14sUZeiSaAdL4mgIR0CrvLvTXrdFdX2UKGgGR0Bu/Hdfsu3+aAdL4mgIR0CrvNIgvDgqdX2UKGgGR0BzSvNQj2SMaAdL2WgIR0CrvVqhL5ARdX2UKGgGR0BxlBloUSIyaAdL/WgIR0CrvXcMNMGpdX2UKGgGR0ByyHWnTAnEaAdL8GgIR0CrvZv0I1LrdX2UKGgGR0BxwmxSpBHDaAdL9GgIR0CrvcEPDpC8dX2UKGgGR0Bt7bzundftaAdL4GgIR0CrvdcFyJbddX2UKGgGR0Byh3sw+MZQaAdL62gIR0Crvhyy2QXAdX2UKGgGR0BxWQTM7lq8aAdL72gIR0CrviV3MY/FdX2UKGgGR0By6HURWcSXaAdL0mgIR0CrvnSxJNCadX2UKGgGR0Bzq/lNlAeJaAdL62gIR0CrvniXyAhCdX2UKGgGR0By3T5ZbILgaAdL6GgIR0Crvn/+0gKXdX2UKGgGR0BvtoAwPAfuaAdL1mgIR0CrvpYcm0E6dX2UKGgGR0BxkvzwtrbhaAdL2mgIR0CrvrczyjHodX2UKGgGR0ByzAN6PbPAaAdL4WgIR0Crvu6sZHd5dX2UKGgGR0BxXbBWPtD2aAdL2WgIR0CrvvZyuIRAdX2UKGgGR0ByZZeC04R3aAdL02gIR0Crvxbxd6cBdX2UKGgGR0ByFWwxFiKBaAdL02gIR0Crvyn3L3bmdX2UKGgGR0Bx7lDgIhQnaAdL1GgIR0Crv+avq1PWdX2UKGgGR0ByhevQnhKlaAdL4GgIR0Crv+YhUzbfdX2UKGgGR0Bu3n4ZdfLLaAdL6WgIR0Crv+Y1YQrddX2UKGgGR0ByIFgSeyzHaAdL6GgIR0CrwGC/oJRgdX2UKGgGR0BxeAzvZyuIaAdL12gIR0CrwHR1HOKPdX2UKGgGR0BxKUyGi5/caAdL92gIR0CrwHj5TIeYdX2UKGgGR0BuCvbEgntwaAdL2GgIR0CrwH9bgTAWdX2UKGgGR0Bw/zzYmLLqaAdL3mgIR0CrwNsc6vJSdX2UKGgGR0BwmezSkTHsaAdL5WgIR0CrwPMDfWMCdX2UKGgGR0BzZZsLv1DjaAdL02gIR0CrwQSrxRVIdX2UKGgGR0BxoxbkfcN6aAdL7mgIR0CrwRSG8EmqdX2UKGgGR0BwpyQ5myxBaAdL8GgIR0CrwTEXtShrdX2UKGgGR0BwNQ00m+j/aAdL2GgIR0CrwVfJmukldX2UKGgGR0BxR3DIikftaAdL0GgIR0CrwWXhfjS5dX2UKGgGR0ByqJVHWjGlaAdL/GgIR0CrwbF4keIVdX2UKGgGR0ByfR2FFlTWaAdL7GgIR0CrwcWki2UjdX2UKGgGR0Bz1ptdiUgTaAdL5GgIR0CrwnIa99MLdX2UKGgGR0BwYjnU2DQJaAdL72gIR0CrwpdZaFEidX2UKGgGR0BxIJpg1FYuaAdL8mgIR0CrwqG5UcXFdX2UKGgGR0BxLLZYgaFVaAdL0GgIR0CrwrP69CeFdX2UKGgGR0By9N2ovSMMaAdL0WgIR0CrwtTU7Sy/dX2UKGgGR0BwlWA9V3lkaAdL4GgIR0CrwvbgsK9gdX2UKGgGR0BxXkIzFdcCaAdL+GgIR0Crw0VXeWOZdX2UKGgGR0BxC1QJokAxaAdL2mgIR0Crw1VJcxCZdX2UKGgGR0BzV5qnFYMfaAdL0mgIR0Crw2dgfEGadX2UKGgGR0BzMkEfT1CgaAdL4WgIR0Crw4AggX/HdX2UKGgGR0Bwva5xzaK2aAdL12gIR0Crw4S5y2hJdX2UKGgGR0BwBBLK3d9EaAdLzWgIR0Crw6qzzErHdX2UKGgGR0BvEzhzeXRgaAdL32gIR0Crw7UQ04zadX2UKGgGR0BzDCphnanKaAdL0mgIR0Crw8NhuwX7dX2UKGgGR0ByjQir1dxAaAdL02gIR0CrxAhl+VkddX2UKGgGR0Bx/bMEA5q/aAdLxWgIR0CrxNi97F85dX2UKGgGR0BzKF3Qla8paAdNFQFoCEdAq8TX8dgfEHV9lChoBkdAb7hpGFzuGGgHS9xoCEdAq8ThR4yGjHV9lChoBkdAcdsexwAEMmgHS9VoCEdAq8T2W6bvw3V9lChoBkdAcU08UEgW8GgHS91oCEdAq8UDe/Ho5nV9lChoBkdAcsdoTPBzm2gHS+JoCEdAq8VHQ0GeMHV9lChoBkdAcD6gRK6FumgHS91oCEdAq8W5rJr+HnV9lChoBkdAcXmpr1uivmgHS/5oCEdAq8XBdKNADHV9lChoBkdAcKlDyvs7dWgHS+ZoCEdAq8XGQ8wHq3V9lChoBkdAb2T7aZhKDmgHS9toCEdAq8XiaXrt3XV9lChoBkdAby/JiAlOXWgHS+VoCEdAq8Xl2C/XXnV9lChoBkdAc1oZ8a4tpWgHS91oCEdAq8XsW0qpcXV9lChoBkdAc2KwW3z+WGgHS9xoCEdAq8YqBmPHUHV9lChoBkdAcDWzeGfwqmgHS+xoCEdAq8Y7bHp8nnV9lChoBkdAb8M8+RoysWgHS+FoCEdAq8aHR3NcGHV9lChoBkdAcp5FgUlAvGgHS8ZoCEdAq8ce8/UvwnV9lChoBkdAcrtKDCgsb2gHTUABaAhHQKvHQBtk4FR1fZQoaAZHQHFGXRgJC0FoB0vUaAhHQKvHYwr1/Uh1fZQoaAZHQHJCj1kDp1RoB0viaAhHQKvHb8rI5o51fZQoaAZHQHPJIxYaHbhoB0vtaAhHQKvHj63y7PJ1fZQoaAZHQHGUTKDCgsdoB0vlaAhHQKvHpM6ij+J1fZQoaAZHQHFfal+EytVoB0vnaAhHQKvH96lchTx1fZQoaAZHQHGSFyJbdJtoB0vLaAhHQKvIE8V58jR1fZQoaAZHQHAjVSXMQmNoB0vQaAhHQKvIKf+S8rZ1fZQoaAZHQHL73Pmgam5oB0vPaAhHQKvIK1zhgmZ1fZQoaAZHQHJzWDg62fFoB0vJaAhHQKvINS4vvjR1fZQoaAZHQHCKIT0xubZoB0vmaAhHQKvIig4ffXR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfa2af5b0b480f9687c34604e46cb733296ed97170400569593a86e48970ec48
|
3 |
+
size 148005
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e39af7b0e00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e39af7b0ea0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e39af7b0f40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e39af7b0fe0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e39af7b1080>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e39af7b1120>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e39af7b11c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e39af7b1260>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e39af7b1300>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e39af7b13a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e39af7b1440>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e39af7b14e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e39af711b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5046272,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1738183446201238710,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYbmD1DVI0/8yziPWKy5L5GD/I91a2HvQAAAAAAAAAAs+g8PdZwvD+aq90+JdIbPgSCAjzREwE+AAAAAAAAAAAzoXM8Wwl2PwLYwz2me/y+gi8ZPZO1b7sAAAAAAAAAABrXFb6DqPo+c9lxPv/Hxb5M8mM8ugbwPQAAAAAAAAAAmrCkPIBXoj7j6Kg980/ZvoeVoD3The49AAAAAAAAAABmqw09BWXku8eogjznA1Y8gzgvvSvnNj0AAIA/AACAP019Lj3HwFs/WA/dPGVd7741rR49oiwKvAAAAAAAAAAAGkfGvUUiTT/yPuK9HGHuvuZEZb4yJbc8AAAAAAAAAABmu6G8FLaTunCBOzsT1G45Z4gGu1Mb27kAAIA/AACAP80g7jv2dHm6Wo1Qua3NYjvAjke7KB9sPAAAgD8AAIA/DRilPRRAcj52Ik++ysXBvh0jLbwyfDq9AAAAAAAAAACzDue9hPspPz2PmT1Cbsm+qli0vSZwvDwAAAAAAAAAAJpN0T0cRmg/DowDPmqo9b4dqEE+kTsGuwAAAAAAAAAATZRCvUgPorq6rS+z7Hc5sIMBa7qtjc8zAACAPwAAgD9Npl+9/ekbPm4BaD5j27K+bMT9PThcTD0AAAAAAAAAAOYlCz3Un+g+78SwvVSKzL4xV1e8KehCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.009254400000000107,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCATzZpSJmMAWyUS/SMAXSUR0CruRSmqHXVdX2UKGgGR0Bw7cakyk9EaAdL3GgIR0CruS+GO+7EdX2UKGgGR0BwsKD28IzFaAdL+GgIR0CruX8kUsWgdX2UKGgGR0Bwtik/KQq7aAdL42gIR0CruX7WmP5pdX2UKGgGR0BwxEBmwqy4aAdL+WgIR0CruYpCSidrdX2UKGgGR0ByFOPhhpg1aAdL5mgIR0Crud7uDzy0dX2UKGgGR0BzSOnDR+jNaAdLzmgIR0CrugPZh8YydX2UKGgGR0Bybl+jM3ZPaAdL12gIR0CruhdqcmShdX2UKGgGR0BymCwQlKK6aAdL4mgIR0CrujocaOxTdX2UKGgGR0BzYxMcp9ZzaAdLxmgIR0Cruk7RWtEHdX2UKGgGR0Bw4BuwX668aAdL0WgIR0CrupyJ0nw5dX2UKGgGR0BzVMUHpr1vaAdL8GgIR0CruuTtsvZidX2UKGgGR0BxTo8p1A7gaAdL4WgIR0CruunskY4ydX2UKGgGR0ByAxyT6i0waAdLy2gIR0Cruv1gpjMFdX2UKGgGR0ByI1z1bqyGaAdL4mgIR0Cru0nLq2SddX2UKGgGR0BuvnSOR1YAaAdL12gIR0Cru2ja4+bFdX2UKGgGR0BuuDKRuCPIaAdL12gIR0Cru21Aqur7dX2UKGgGR0Bzse9lEqlQaAdL7GgIR0Cru8Rt52QodX2UKGgGR0ByOw4n4O+aaAdL1mgIR0Cru9YkmhM8dX2UKGgGR0BvWjUTcqOMaAdL6GgIR0CrvA1Muez2dX2UKGgGR0Bynecx0uDjaAdL7GgIR0CrvCPqcEvCdX2UKGgGR0BxUBeUpuuSaAdL1mgIR0CrvD6kRBeHdX2UKGgGR0Bx4UOy3Td+aAdL0WgIR0CrvGdsJpnIdX2UKGgGR0BxgJKVY6n0aAdL42gIR0CrvIWhAWzodX2UKGgGR0Bx14sUZeiSaAdL4mgIR0CrvLvTXrdFdX2UKGgGR0Bu/Hdfsu3+aAdL4mgIR0CrvNIgvDgqdX2UKGgGR0BzSvNQj2SMaAdL2WgIR0CrvVqhL5ARdX2UKGgGR0BxlBloUSIyaAdL/WgIR0CrvXcMNMGpdX2UKGgGR0ByyHWnTAnEaAdL8GgIR0CrvZv0I1LrdX2UKGgGR0BxwmxSpBHDaAdL9GgIR0CrvcEPDpC8dX2UKGgGR0Bt7bzundftaAdL4GgIR0CrvdcFyJbddX2UKGgGR0Byh3sw+MZQaAdL62gIR0Crvhyy2QXAdX2UKGgGR0BxWQTM7lq8aAdL72gIR0CrviV3MY/FdX2UKGgGR0By6HURWcSXaAdL0mgIR0CrvnSxJNCadX2UKGgGR0Bzq/lNlAeJaAdL62gIR0CrvniXyAhCdX2UKGgGR0By3T5ZbILgaAdL6GgIR0Crvn/+0gKXdX2UKGgGR0BvtoAwPAfuaAdL1mgIR0CrvpYcm0E6dX2UKGgGR0BxkvzwtrbhaAdL2mgIR0CrvrczyjHodX2UKGgGR0ByzAN6PbPAaAdL4WgIR0Crvu6sZHd5dX2UKGgGR0BxXbBWPtD2aAdL2WgIR0CrvvZyuIRAdX2UKGgGR0ByZZeC04R3aAdL02gIR0Crvxbxd6cBdX2UKGgGR0ByFWwxFiKBaAdL02gIR0Crvyn3L3bmdX2UKGgGR0Bx7lDgIhQnaAdL1GgIR0Crv+avq1PWdX2UKGgGR0ByhevQnhKlaAdL4GgIR0Crv+YhUzbfdX2UKGgGR0Bu3n4ZdfLLaAdL6WgIR0Crv+Y1YQrddX2UKGgGR0ByIFgSeyzHaAdL6GgIR0CrwGC/oJRgdX2UKGgGR0BxeAzvZyuIaAdL12gIR0CrwHR1HOKPdX2UKGgGR0BxKUyGi5/caAdL92gIR0CrwHj5TIeYdX2UKGgGR0BuCvbEgntwaAdL2GgIR0CrwH9bgTAWdX2UKGgGR0Bw/zzYmLLqaAdL3mgIR0CrwNsc6vJSdX2UKGgGR0BwmezSkTHsaAdL5WgIR0CrwPMDfWMCdX2UKGgGR0BzZZsLv1DjaAdL02gIR0CrwQSrxRVIdX2UKGgGR0BxoxbkfcN6aAdL7mgIR0CrwRSG8EmqdX2UKGgGR0BwpyQ5myxBaAdL8GgIR0CrwTEXtShrdX2UKGgGR0BwNQ00m+j/aAdL2GgIR0CrwVfJmukldX2UKGgGR0BxR3DIikftaAdL0GgIR0CrwWXhfjS5dX2UKGgGR0ByqJVHWjGlaAdL/GgIR0CrwbF4keIVdX2UKGgGR0ByfR2FFlTWaAdL7GgIR0CrwcWki2UjdX2UKGgGR0Bz1ptdiUgTaAdL5GgIR0CrwnIa99MLdX2UKGgGR0BwYjnU2DQJaAdL72gIR0CrwpdZaFEidX2UKGgGR0BxIJpg1FYuaAdL8mgIR0CrwqG5UcXFdX2UKGgGR0BxLLZYgaFVaAdL0GgIR0CrwrP69CeFdX2UKGgGR0By9N2ovSMMaAdL0WgIR0CrwtTU7Sy/dX2UKGgGR0BwlWA9V3lkaAdL4GgIR0CrwvbgsK9gdX2UKGgGR0BxXkIzFdcCaAdL+GgIR0Crw0VXeWOZdX2UKGgGR0BxC1QJokAxaAdL2mgIR0Crw1VJcxCZdX2UKGgGR0BzV5qnFYMfaAdL0mgIR0Crw2dgfEGadX2UKGgGR0BzMkEfT1CgaAdL4WgIR0Crw4AggX/HdX2UKGgGR0Bwva5xzaK2aAdL12gIR0Crw4S5y2hJdX2UKGgGR0BwBBLK3d9EaAdLzWgIR0Crw6qzzErHdX2UKGgGR0BvEzhzeXRgaAdL32gIR0Crw7UQ04zadX2UKGgGR0BzDCphnanKaAdL0mgIR0Crw8NhuwX7dX2UKGgGR0ByjQir1dxAaAdL02gIR0CrxAhl+VkddX2UKGgGR0Bx/bMEA5q/aAdLxWgIR0CrxNi97F85dX2UKGgGR0BzKF3Qla8paAdNFQFoCEdAq8TX8dgfEHV9lChoBkdAb7hpGFzuGGgHS9xoCEdAq8ThR4yGjHV9lChoBkdAcdsexwAEMmgHS9VoCEdAq8T2W6bvw3V9lChoBkdAcU08UEgW8GgHS91oCEdAq8UDe/Ho5nV9lChoBkdAcsdoTPBzm2gHS+JoCEdAq8VHQ0GeMHV9lChoBkdAcD6gRK6FumgHS91oCEdAq8W5rJr+HnV9lChoBkdAcXmpr1uivmgHS/5oCEdAq8XBdKNADHV9lChoBkdAcKlDyvs7dWgHS+ZoCEdAq8XGQ8wHq3V9lChoBkdAb2T7aZhKDmgHS9toCEdAq8XiaXrt3XV9lChoBkdAby/JiAlOXWgHS+VoCEdAq8Xl2C/XXnV9lChoBkdAc1oZ8a4tpWgHS91oCEdAq8XsW0qpcXV9lChoBkdAc2KwW3z+WGgHS9xoCEdAq8YqBmPHUHV9lChoBkdAcDWzeGfwqmgHS+xoCEdAq8Y7bHp8nnV9lChoBkdAb8M8+RoysWgHS+FoCEdAq8aHR3NcGHV9lChoBkdAcp5FgUlAvGgHS8ZoCEdAq8ce8/UvwnV9lChoBkdAcrtKDCgsb2gHTUABaAhHQKvHQBtk4FR1fZQoaAZHQHFGXRgJC0FoB0vUaAhHQKvHYwr1/Uh1fZQoaAZHQHJCj1kDp1RoB0viaAhHQKvHb8rI5o51fZQoaAZHQHPJIxYaHbhoB0vtaAhHQKvHj63y7PJ1fZQoaAZHQHGUTKDCgsdoB0vlaAhHQKvHpM6ij+J1fZQoaAZHQHFfal+EytVoB0vnaAhHQKvH96lchTx1fZQoaAZHQHGSFyJbdJtoB0vLaAhHQKvIE8V58jR1fZQoaAZHQHAjVSXMQmNoB0vQaAhHQKvIKf+S8rZ1fZQoaAZHQHL73Pmgam5oB0vPaAhHQKvIK1zhgmZ1fZQoaAZHQHJzWDg62fFoB0vJaAhHQKvINS4vvjR1fZQoaAZHQHCKIT0xubZoB0vmaAhHQKvIig4ffXR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 308,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 4096,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bae39d82ee695dae74a31213762abbbb43d3a43a412784ef0b34a4aac46bace
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61d16b0d2ecc6878954195e3af18a772271717569b6dbf8fdf918801bdbffdca
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 293.36195710000004, "std_reward": 13.520297007871205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-29T22:09:26.538049"}
|