davanstrien HF staff commited on
Commit
3e2b32c
·
1 Parent(s): d8fd901

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -10
README.md CHANGED
@@ -65,19 +65,14 @@ It will likely make more sense to use this model in the context of a 'human in t
65
  You can use cURL to access this model:
66
 
67
  ```
68
- $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272
69
  ```
70
 
71
- Or Python API:
72
 
73
  ```
74
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
75
 
76
- model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True)
77
-
78
- tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True)
79
-
80
- inputs = tokenizer("I love AutoTrain", return_tensors="pt")
81
-
82
- outputs = model(**inputs)
83
  ```
 
65
  You can use cURL to access this model:
66
 
67
  ```
68
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Elemento di decorazione architettonica a rilievo"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272
69
  ```
70
 
71
+ You can also use the model locally be leveraging a Transformers [pipeline](https://huggingface.co/docs/transformers/pipeline_tutorial)
72
 
73
  ```
74
+ from transformers import pipeline
75
 
76
+ pipe = pipeline('text-classification', model='biglam/cultural_heritage_metadata_accuracy')
77
+ pipe("Elemento di decorazione architettonica a rilievo")
 
 
 
 
 
78
  ```