bhavnicksm commited on
Commit
38af8f7
·
verified ·
1 Parent(s): ea4b7de

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dark-potion-base-150M Model Card
2
+
3
+ This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of a **dark secret model** 🤫. This model was created by [Bhavnick Minhas](https://github.com/bhavnicksm) using the [Model2Vec](https://github.com/MinishLab/model2vec) library, as a proof of concept, answering the question: "Can we distill static embeddings from a Sentence Embedding API, without any access to the original model?".
4
+
5
+ The original model is a proprietary model, and the only information we have about it is the tokenizer.json file, which contains the vocabulary and special tokens. We use this information to create a new tokenizer, and then use the Model2Vec library to distill a static embedding model from the API. Note that this is perfectly legal as embeddings are owned by the user as long as they are paid for, and the user is free to use them in any way they want.
6
+
7
+ All credit goes to the [Minish Lab](https://github.com/MinishLab) team for the original model and the [Model2Vec](https://github.com/MinishLab/model2vec) library.
8
+
9
+ ## Installation
10
+
11
+ Install model2vec using pip:
12
+
13
+ ```bash
14
+ pip install model2vec
15
+ ```
16
+
17
+ ## Usage
18
+
19
+ Load this model using the `from_pretrained` method:
20
+
21
+ ```python
22
+ from model2vec import StaticModel
23
+
24
+ # Load a pretrained Model2Vec model
25
+ model = StaticModel.from_pretrained("bhavnicksm/dark-potion-base-150M")
26
+
27
+ # Compute text embeddings
28
+ embeddings = model.encode(["Example sentence"])
29
+ ```
30
+
31
+ ## How it works
32
+
33
+ Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
34
+
35
+ It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using zipf weighting. During inference, we simply take the mean of all token embeddings occurring in a sentence.
36
+
37
+ ## Additional Resources
38
+
39
+ - [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
40
+ - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
41
+ - [Model2Vec Results](https://github.com/MinishLab/model2vec?tab=readme-ov-file#results)
42
+ - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
43
+
44
+ ## Library Authors
45
+
46
+ Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
47
+
48
+ ## Citation
49
+
50
+ Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
51
+
52
+ ```bibtex
53
+ @software{minishlab2024model2vec,
54
+ authors = {Stephan Tulkens, Thomas van Dongen},
55
+ title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model},
56
+ year = {2024},
57
+ url = {https://github.com/MinishLab/model2vec},
58
+ }
59
+ ```
config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "model2vec",
3
+ "architectures": [
4
+ "StaticModel"
5
+ ],
6
+ "tokenizer_name": "cl100k_base",
7
+ "apply_pca": 1536,
8
+ "apply_zipf": false,
9
+ "hidden_dim": 1536,
10
+ "seq_length": 1000000,
11
+ "normalize": false
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8377d00215d780cf38a513de2912ee55bc5d598675a2d22e3c185684c4ceafcf
3
+ size 1231945824
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83ab9ebd416f1db1dcd00c863df0faafd3a0ef1fa26ff0d2f0d8ffd7e5e35080
3
+ size 13846757
tokenizer_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "clean_up_tokenization_spaces": false,
4
+ "extra_special_tokens": {},
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "tokenizer_class": "PreTrainedTokenizerFast"
7
+ }