File size: 6,129 Bytes
b0dc553
 
 
 
cb90fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a4971
 
 
 
 
65efbe3
 
02a4971
d22aa6e
 
5e91a78
 
 
 
 
 
 
 
 
 
c73eb76
 
5e91a78
 
 
 
 
 
 
 
 
c73eb76
 
5e91a78
 
 
 
 
 
 
 
 
c73eb76
 
5e91a78
 
 
 
c73eb76
 
f71d0bd
 
 
 
 
 
 
c73eb76
 
5e91a78
 
 
02a4971
 
 
 
 
 
 
 
 
 
 
cb90fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: mit
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: SOLAR-10B-OrcaDPO-Jawade
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 71.16
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.27
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.12
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.57
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.66
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.82
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
      name: Open LLM Leaderboard
---

## SOLAR-10B-OrcaDPO-Jawade

### Overview
This model card is instruction finetuned version of `upstage/SOLAR-10.7B-Instruct-v1.0` model. Trained on the Intel DPO Orca dataset using LoRA. Though it should be noted SOLAR-10.7B paper states that the 
original model for alignment was trained on Intel ORCA DPO pairs. Retraining using DPO and LoRA shows slight (<1%) improvement on OpenLLM Leaderboard benchmarks against `SOLAR 10.7B-Instruct` and significant over `SOLAR 10.7B`

![model_card_image](SOLAR_ORCA.png)

## How to Use This Model

To use the model `bhavinjawade/SOLAR-10B-OrcaDPO-Jawade`, follow these steps:

1. **Import and Load the Model and Tokenizer**
   Begin by importing the model and tokenizer. Load them using the `from_pretrained` method.

   ```python
   from transformers import AutoModelForCausalLM, AutoTokenizer
   model = AutoModelForCausalLM.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
   tokenizer = AutoTokenizer.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
   ```

2. **Format the Prompt**
Format the chat input as a list of messages, each with a role ('system' or 'user') and content.

    ```python
    message = [
        {"role": "system", "content": "You are a helpful assistant chatbot."},
        {"role": "user", "content": "Is the universe real? or is it a simulation? whats your opinion?"}
    ]
    prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
    ```

3. **Create a Pipeline**
Set up a pipeline for text generation with the loaded model and tokenizer.

    ```python
    pipeline = transformers.pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer
    )
    ```

4. **Generate Text**
Use the pipeline to generate a sequence of text based on the prompt. You can adjust parameters like temperature and top_p for different styles of responses.

   ```python
   sequences = pipeline(
         prompt,
         do_sample=True,
       temperature=0.7,
          top_p=0.9,
          num_return_sequences=1,
          max_length=200,
      )
    print(sequences[0]['generated_text'])
    ```

This setup allows you to utilize the capabilities of the **bhavinjawade/SOLAR-10B-OrcaDPO-Jawade** model for generating responses to chat inputs.

### License
- **Type**: MIT License
- **Details**: This license permits reuse, modification, and distribution for both private and commercial purposes under the terms of the MIT License.

### Model Details
- **Model Name**: SOLAR-10.7B-Instruct-v1.0
- **Organization**: Upstage
- **Training Dataset**: Intel/orca_dpo_pairs
- **Technique Used**: LoRA (Low-Rank Adaptation)

### Contact Information
- https://bhavinjawade.github.io
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-OrcaDPO-Jawade)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.27|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot)              |88.27|
|MMLU (5-Shot)                    |66.12|
|TruthfulQA (0-shot)              |71.57|
|Winogrande (5-shot)              |83.66|
|GSM8k (5-shot)                   |64.82|