File size: 2,726 Bytes
b0dc553 02a4971 65efbe3 02a4971 5e91a78 c73eb76 5e91a78 c73eb76 5e91a78 c73eb76 5e91a78 c73eb76 f71d0bd c73eb76 5e91a78 02a4971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
datasets:
- Intel/orca_dpo_pairs
---
## SOLAR-10B-OrcaDPO-Jawade
### Overview
This model card is instruction finetuned version of `upstage/SOLAR-10.7B-Instruct-v1.0` model. Trained on the Intel DPO Orca dataset using LoRA. Though it should be noted SOLAR-10.7B paper states that the
original model for alignment was trained on Intel ORCA DPO pairs. Retraining using DPO and LoRA shows slight (<1%) improvement on OpenLLM Leaderboard benchmarks against `SOLAR 10.7B-Instruct` and significant over `SOLAR 10.7B`
## How to Use This Model
To use the model `bhavinjawade/SOLAR-10B-OrcaDPO-Jawade`, follow these steps:
1. **Import and Load the Model and Tokenizer**
Begin by importing the model and tokenizer. Load them using the `from_pretrained` method.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
tokenizer = AutoTokenizer.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
```
2. **Format the Prompt**
Format the chat input as a list of messages, each with a role ('system' or 'user') and content.
```python
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "Is the universe real? or is it a simulation? whats your opinion?"}
]
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
```
3. **Create a Pipeline**
Set up a pipeline for text generation with the loaded model and tokenizer.
```python
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
```
4. **Generate Text**
Use the pipeline to generate a sequence of text based on the prompt. You can adjust parameters like temperature and top_p for different styles of responses.
```python
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
This setup allows you to utilize the capabilities of the **bhavinjawade/SOLAR-10B-OrcaDPO-Jawade** model for generating responses to chat inputs.
### License
- **Type**: MIT License
- **Details**: This license permits reuse, modification, and distribution for both private and commercial purposes under the terms of the MIT License.
### Model Details
- **Model Name**: SOLAR-10.7B-Instruct-v1.0
- **Organization**: Upstage
- **Training Dataset**: Intel/orca_dpo_pairs
- **Technique Used**: LoRA (Low-Rank Adaptation)
### Contact Information
- https://bhavinjawade.github.io |