--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-char results: [] --- # distilbert-base-uncased-finetuned-char This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1436 | 0.85 | 500 | 1.8943 | | 1.8911 | 1.71 | 1000 | 1.8065 | | 1.8073 | 2.56 | 1500 | 1.7359 | | 1.7668 | 3.41 | 2000 | 1.6907 | | 1.733 | 4.27 | 2500 | 1.6564 | | 1.7104 | 5.12 | 3000 | 1.6499 | | 1.6915 | 5.97 | 3500 | 1.6258 | | 1.6772 | 6.83 | 4000 | 1.6089 | | 1.6617 | 7.68 | 4500 | 1.5982 | | 1.6563 | 8.53 | 5000 | 1.6035 | | 1.649 | 9.39 | 5500 | 1.5764 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3