--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.929 name: Accuracy - type: f1 value: 0.9295613935787139 name: F1 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - type: accuracy value: 0.925 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZThkYWEwYTdjY2IwMmE4NmM2Mzc3ZTVkNTNmNWYwNGUxYTM5ZDA5ODEwMGQ1ZGU0ZmJmY2U1ZDhjYWRlZjU2NSIsInZlcnNpb24iOjF9.QJYOUR_EPrYzbZGBb1N27BSlTQIdvd1hmUfnfPJdTGGrNoQwXBUA4amVsWh1txV_YtO8hcCx-b3pTqzpdy1FAw - type: precision value: 0.8722017563353339 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2Y3ZGM2NDk5ZTQyNTNjZDdmNjk5Y2IwNzkxNmU3MDM0YTljMTJjMzFmMTlkN2ZjN2NhZjNhYTVlMWY5NWFjNCIsInZlcnNpb24iOjF9.cBYScC_c6g1ECi3rj6HiRI3AMuoxg8wp7JKha0UKh1Q2qjzTr5ml8JAByPL0iu-Ix5BO2Bsx0fZNFhUS82LiCg - type: precision value: 0.925 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjVjYjgwYjE2ZWUyM2Y5MzE0ODk4NDA5MGM2ODIxYTgxZDYyMTUxNzcwZWQ2MjZjZGYwODkyNzFkMjAxOTUzYyIsInZlcnNpb24iOjF9.phgA4BJcqp4ZUhecNeuGU8OAf6f_asN9Mf6JfFGd0cPORYltd_N4Wf6EXqu6z1ADqWeeibteEyIUwmmMEbjYBQ - type: precision value: 0.9283646705517916 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjE4MDUyYjU4YTc4Mzk4YmIwMGIzZWEyYmU5ZDQ0MjRhZDQ4OGMwZjVmZmEyNDM5NzYyZTMzMTJiMmRkZTU4NiIsInZlcnNpb24iOjF9.LbYjoga-JSCzHZAF1fhm1CfuaSSI-ok0yXj3gtd4QTWY1TjzOHoMG3Q6zEGz84l6ASoHsvi9wjS7_EaSQLB4Dw - type: recall value: 0.8982480793145559 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzFiY2JmYWRhYmE1YzA1MmRhODI0MGE1NTRiMWE3YmNjZWQ4OGExMDg3NmUzYmUzYTYyNTdkNjM1Y2M0ODJmMCIsInZlcnNpb24iOjF9.dAq2gloG0O-4z5Ng7RZkFO7e0og3wBQBmIDzic6onwjw83yaHPVfRd1e0j6mNhMUifOwPLEavnYkBYa9DVFqCw - type: recall value: 0.925 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjg5Y2M2NWIwZmI4YjEyMmIzYjNjZmQyMzhlYjg2ZDRmY2U1M2I1NzQzYjRmMzYxYzJkNTI5MDJjMmY5ZDVmNyIsInZlcnNpb24iOjF9.Z5hmQBUsoKAgqTXk47aUDNKf5jJ0mXzY9TAgM9vG8I3pgCT465PEfM-TOKfG_YcPMLd3tkB8AdwDpmVnNj5QCw - type: recall value: 0.925 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODIzMjY1YjgzYzAwNjk2NGI1ZjFhZTg4MGY1Mzg5NDhkM2EzY2JlMWM4MjZmNjg4ZmEyZDJmZTUwNDFkZmNiOCIsInZlcnNpb24iOjF9.S-9p04Lru9WTzm50mM5qGM4oA-TPgNw6uwxKr5AejU1iPKjyTDQvoumBs41T5OKL5zN_NyYXsFsCermSbirLAw - type: f1 value: 0.883488774573809 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGMyMjc3NTkxNDNjNTJiNmRmMTA4NzY0MTgyMDc3ZDE4N2RlMTY1YzU4OGQ1YmM1NzY2OGQ4Y2I0MzVhOGU3OSIsInZlcnNpb24iOjF9.D65sLHNZGjp15ra4i5ccYyOX705Xq-hftZjDb6kqE5X-jhzA5VLev6FirhnhyYLBQmA6Q9T1eDYHKkVZG4CcBg - type: f1 value: 0.925 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTNkMmUwNjYxNGE4M2E2MDA0NTI4ZjA1OTNkMWEwN2MzY2JmMWYxYThiYTZmM2MwZjM5YTIzMGIzMGI4ODJlZSIsInZlcnNpb24iOjF9.cB4WUQN_weyKdMZehH0ECaTcD9Jl1xzmrOzJZz27OJeCPjY0uW8O63HnJZ_LmBF2xqd7HDypT4s8hZBMT-6eDw - type: f1 value: 0.9259820821054494 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTY3NDhjNmMzYzM1MjIyY2FkYjI5YTQ1NTdmODhmMGVlNjc2ZjQ3MWZmZWEyMDQ1OGI1NDllZTBhM2VjYzg2MSIsInZlcnNpb24iOjF9.Akd8PVgc2tyin_TaOZV1bio_b00g3QmlHA-GWV3rMX13B1imDLuPAuP-HWIwgqg-umQUkJzcUQlTqbcQ06v0DQ - type: loss value: 0.18158096075057983 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDZhODkzODQ2ZjYyMWQxYjEzNzRmMmQ0NjM3M2RiNDdlMTcwOGRhYjA0NWEwYTVjMmY0ZWY3NGQ3MzFhMTQ3ZSIsInZlcnNpb24iOjF9.jzv7qMmQuFmrsR3WoRAsCbrRJhNk0sfEcN07lCqhxUwYcO4rblVbBiePQtr0IDN067PbQmV6ES6W2cjHqvuHAA --- # bertweet-base-finetuned-emotion This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - Accuracy: 0.929 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9469 | 1.0 | 250 | 0.3643 | 0.895 | 0.8921 | | 0.2807 | 2.0 | 500 | 0.2173 | 0.9245 | 0.9252 | | 0.1749 | 3.0 | 750 | 0.1859 | 0.926 | 0.9266 | | 0.1355 | 4.0 | 1000 | 0.1737 | 0.929 | 0.9296 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3