First model
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1776.23 +/- 237.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4fb109b6222cacfbb4c38f54a78168340f84c15d96d040a5fa0e1f3e5c45b8b
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b0db624c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b0db62550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b0db625e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b0db62670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4b0db62700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4b0db62790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b0db62820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b0db628b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4b0db62940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b0db629d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b0db62a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b0db62af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f4b0db5e420>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674421778185979654,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACiTWj9QXOW/AEfrvxY0zz/064S/8wFnPTh1XDzaFmu/wjjKvohQYECKCN0/jmLhPuZIs7+9fcg91jAdv7+gcb/yRKW+3njfvoYwhz5M0+M/mvUFv0sl3T+LUUm/2WSDPFZHRj9Y2A/AiuoPP/4rjL8Qrgw+SM8nPwVwCz/ieFs/U3OFvxMMhj1TQFw/59MqPe5nzz4CwYC+W0VVP9N2ez7A+oS/yWM1wH2rfb8F08W/F46BvjvX1799bOQ+HvVAPicwJr/4HZM8G01Lv4ChyTxWR0Y/9MzjPorqDz/+K4y/9zJ3vQWaDT+tfxA/oJ2IP3NYMr6/U5s/qRhZP7rTrz2mYBI+6aJCP9ZuMj+c8nE+WjVlPwP4fL/WxKa+eFQdvwY1Rz/zZ4K/HSz9PgwWsL5Rnya/droLPV+NBL/qP46+KkOlv/TM4z6K6g8/LMVpP8P1Sj7KvTo+kz8SP04LtT+t6DA/L6CZv275lj5kfRK/j5GMPSjcyb/Rggq/fh8AQGDAgD8fp9O+sMftPmvpRL6vnIo/SJGxv31Vnz53hN2+LVYnv1NbhD2JVk4+xljvvypDpb/0zOM+JrDjv/4rjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACK41S1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA43ZyPQAAAABZiN2/AAAAAPBcYj0AAAAA0n3+PwAAAABsiaw9AAAAAMxO4T8AAAAAtivjPQAAAACAnPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKL3WNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCjdDb4AAAAAiK7ovwAAAAD3dbA8AAAAAPDN7z8AAAAAX2pYPQAAAAARCfo/AAAAANWTbr0AAAAAyS/tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMvQ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICLIZ09AAAAAMoj7r8AAAAAl84KvQAAAACY0/0/AAAAAO6Gxb0AAAAAPNvlPwAAAABV4a69AAAAAOgK/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADt6wO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYn0BPgAAAAC9zea/AAAAAAH3970AAAAANaL8PwAAAACSmky8AAAAAG0w4z8AAAAAadiuPQAAAACqZtm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIJ+GalUIcCMAWyUTb0BjAF0lEdAqAKix7iQ1nV9lChoBkdAm88UBbOeKGgHTegDaAhHQKgDf+hoM8Z1fZQoaAZHQJ2fsZxaPjpoB03oA2gIR0CoBk655JK8dX2UKGgGR0CdX5P/aQFLaAdN6ANoCEdAqAs3CsOoYXV9lChoBkdAnw6MQyylemgHTegDaAhHQKgOAtPHktF1fZQoaAZHQJytCt2cJ+loB03oA2gIR0CoDudiUgSwdX2UKGgGR0CdLSog3cYZaAdN6ANoCEdAqBHWqrBCU3V9lChoBkdAn3bYiHIp6WgHTegDaAhHQKgWukzGgjB1fZQoaAZHQJvusrd30PJoB03oA2gIR0CoGZSIgvDhdX2UKGgGR0CYnXzLOiWWaAdN6ANoCEdAqBpzaTOgQHV9lChoBkdAms2GOhkAgmgHTegDaAhHQKgdTn0TURZ1fZQoaAZHQJsO7iYLLIRoB03oA2gIR0CoIla3iJfqdX2UKGgGR0CfaNnPmganaAdN6ANoCEdAqCUgOz6acHV9lChoBkdAoD5yoqCpWGgHTegDaAhHQKgl+ovzvql1fZQoaAZHQJ1TlxJd0JZoB03oA2gIR0CoKNlrEcbSdX2UKGgGR0CgHQeHJtBOaAdN6ANoCEdAqC3E690zTHV9lChoBkdAlPTREKE39GgHTegDaAhHQKgwrN8ma6V1fZQoaAZHQJm/vcgyM1loB03oA2gIR0CoMY+Vkc0cdX2UKGgGR0Cbi18Empl0aAdN6ANoCEdAqDRkJrtVrHV9lChoBkdAlZ2gUg0TDmgHTegDaAhHQKg5VwNLDht1fZQoaAZHQJuZk1n/T9doB03oA2gIR0CoPDcQiA2AdX2UKGgGR0CU7kMNtqHoaAdN6ANoCEdAqD0aqOtGNXV9lChoBkdAmTBxmbsniWgHTegDaAhHQKg//8Yyfth1fZQoaAZHQJ+5gMb3oLZoB03oA2gIR0CoRPmyPdVOdX2UKGgGR0CdZyi48U22aAdN6ANoCEdAqEfglt0mt3V9lChoBkdAnU6wYLsru2gHTegDaAhHQKhIzfb9If91fZQoaAZHQJ9ek9aEBbRoB03oA2gIR0CoS7uZ9d/sdX2UKGgGR0CabtHlfZ27aAdN6ANoCEdAqFDEU/OdG3V9lChoBkdAoC/n6qKgqWgHTegDaAhHQKhTkwK0D2d1fZQoaAZHQJ7PNqEeyRloB03oA2gIR0CoVHYku6ErdX2UKGgGR0CgapyC4BmxaAdN6ANoCEdAqFdhFVktmXV9lChoBkdAnmQTkhib2GgHTegDaAhHQKhcPXDm8ul1fZQoaAZHQJ55OzTnaFpoB03oA2gIR0CoXwGnn+yadX2UKGgGR0CgMgSgPEsKaAdN6ANoCEdAqF/byH2ys3V9lChoBkdAnnFf82rGR2gHTegDaAhHQKhirPdl/Yt1fZQoaAZHQJ95/3/Pw/hoB03oA2gIR0CoZ7CsfaHsdX2UKGgGR0CbNC29L6DXaAdN6ANoCEdAqGp9Sde6Z3V9lChoBkdAnhcs54nndWgHTegDaAhHQKhrZqcEvCd1fZQoaAZHQJp8y8brC3xoB03oA2gIR0CobkFlK9PDdX2UKGgGR0CeKuH4GlhxaAdN6ANoCEdAqHNgk3S8anV9lChoBkdAmMicf3evZGgHTegDaAhHQKh2TXpW3jN1fZQoaAZHQJoDVAjY7JZoB03oA2gIR0Codz163RXwdX2UKGgGR0CW5YzWwu/UaAdN6ANoCEdAqHo6AYpDu3V9lChoBkdAml6/3ztkWmgHTegDaAhHQKh/QA5q/M51fZQoaAZHQJvaaxNZeRhoB03oA2gIR0Cogis85jpcdX2UKGgGR0CTJfZZjhDPaAdN6ANoCEdAqIMaa9bosHV9lChoBkdAj1Rwkona4GgHTegDaAhHQKiGDzasZHd1fZQoaAZHQKBzQvLX+VFoB03oA2gIR0Coit8ZLqUvdX2UKGgGR0Ccuim16Vt5aAdN6ANoCEdAqI28yeqaPXV9lChoBkdAnW2A7YChe2gHTegDaAhHQKiOpqbjLjh1fZQoaAZHQJxRfTspobpoB03oA2gIR0CokZr3TNMXdX2UKGgGR0CZDg5WilBQaAdN6ANoCEdAqJZzyvs7dXV9lChoBkdAmvVLBbfP5mgHTegDaAhHQKiZRZdOZb91fZQoaAZHQJSrwytV7yBoB03oA2gIR0Comil+NLlFdX2UKGgGR0CT2ts9B8hLaAdN6ANoCEdAqJ0hRsMy8HV9lChoBkdAmkhKu8scyWgHTegDaAhHQKiiHX3g1m91fZQoaAZHQJh4sbcXWOJoB03oA2gIR0CopQ5qVQhwdX2UKGgGR0CcmTn5i3G5aAdN6ANoCEdAqKXxl+Vkc3V9lChoBkdAnUK5Ig/1QWgHTegDaAhHQKiowVxCIDZ1fZQoaAZHQJsnsaVD8cdoB03oA2gIR0CordbHyVfNdX2UKGgGR0CZ6SS/0ulHaAdN6ANoCEdAqLCzP8hs7HV9lChoBkdAl56n3QD3d2gHTegDaAhHQKixnXPqs2h1fZQoaAZHQJsXmNEPUa1oB03oA2gIR0CotKayrxRVdX2UKGgGR0By6rEMspXqaAdN6ANoCEdAqLm6NyYG+3V9lChoBkdAkBHjMJQcgmgHTegDaAhHQKi8lzhgmZ51fZQoaAZHQJcov0K7ZnNoB03oA2gIR0CovXgV45cUdX2UKGgGR0CalLdmQKa5aAdN6ANoCEdAqMBUhC+lCXV9lChoBkdAm928m0E5hmgHTegDaAhHQKjFjxjriVB1fZQoaAZHQJdmQJdB0IVoB03oA2gIR0CoyG0DuBtldX2UKGgGR0CcBKGgzxgBaAdN6ANoCEdAqMlYFkhA4XV9lChoBkdAmsJz1bqyGGgHTegDaAhHQKjMP8rI5o51fZQoaAZHQJSoz6Q/5cloB03oA2gIR0Co0TM41gpjdX2UKGgGR0CalOAuIyj6aAdN6ANoCEdAqNQKnivPknV9lChoBkdAm2Mw+t8uz2gHTegDaAhHQKjVCg6EJ0J1fZQoaAZHQJscUqur6tVoB03oA2gIR0Co2BhrFfiQdX2UKGgGR0CdyxbiqABlaAdN6ANoCEdAqN1mIwdsBXV9lChoBkdAnGDAZflZHWgHTegDaAhHQKjghMFEAo51fZQoaAZHQJyuvyz5XU9oB03oA2gIR0Co4XcCYCyRdX2UKGgGR0Cc5b6OHWSVaAdN6ANoCEdAqORkr9VFQXV9lChoBkdAndUul0o0AWgHTegDaAhHQKjphN5dGAl1fZQoaAZHQJzw7ck+otNoB03oA2gIR0Co7G0oKD02dX2UKGgGR0CdWSpqynk1aAdN6ANoCEdAqO1ZS9/SY3V9lChoBkdAnSxOg6EJ0GgHTegDaAhHQKjwR9+gDih1fZQoaAZHQJco22jO9nNoB03oA2gIR0Co9VNkOI69dX2UKGgGR0CZKn0ngHeKaAdN6ANoCEdAqPg4ysS00HV9lChoBkdAm6yH9itq6GgHTegDaAhHQKj5JVrAP/d1fZQoaAZHQJ1WoSpR4yJoB03oA2gIR0Co/BEZJkGzdX2UKGgGR0CcqyzuWrwOaAdN6ANoCEdAqQEx4Uvf0nV9lChoBkdAnjVVdgOSXGgHTegDaAhHQKkEE+eOGTN1fZQoaAZHQJf6gwaisXBoB03oA2gIR0CpBPzKkl/pdX2UKGgGR0CgX7/8VHnVaAdN6ANoCEdAqQfzE3sHB3V9lChoBkdAm2ex5Pdl/mgHTegDaAhHQKkNClruYyB1fZQoaAZHQJarnK5kK/poB03oA2gIR0CpEAKkM1CPdX2UKGgGR0CZtzM+eOGTaAdN6ANoCEdAqRDn7N0NjXV9lChoBkdAm1nK4QSSNmgHTegDaAhHQKkT4kIHC411fZQoaAZHQJpDn1h9b5doB03oA2gIR0CpGO5NGmUGdX2UKGgGR0CdmfjTKDChaAdN6ANoCEdAqRvYcrAgxXV9lChoBkdAnyG7UG3WnWgHTegDaAhHQKkcuxbB42V1fZQoaAZHQJxS0OPNmlJoB03oA2gIR0CpH6wX668QdX2UKGgGR0CZigXfZVXFaAdN6ANoCEdAqSSnh/Aj6nVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.5,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52fccf77a87b78eaef9455ea8c46733c3f45f2c3b46b4e9906b0988ce730c94c
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c19b5404e5b53c2bbcdc9eb3fc0c5f8cf0d2893eea8b978a5ebc9f9e7a4e087a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b0db624c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b0db62550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b0db625e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b0db62670>", "_build": "<function ActorCriticPolicy._build at 0x7f4b0db62700>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b0db62790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b0db62820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b0db628b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b0db62940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b0db629d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b0db62a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b0db62af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b0db5e420>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674421778185979654, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACiTWj9QXOW/AEfrvxY0zz/064S/8wFnPTh1XDzaFmu/wjjKvohQYECKCN0/jmLhPuZIs7+9fcg91jAdv7+gcb/yRKW+3njfvoYwhz5M0+M/mvUFv0sl3T+LUUm/2WSDPFZHRj9Y2A/AiuoPP/4rjL8Qrgw+SM8nPwVwCz/ieFs/U3OFvxMMhj1TQFw/59MqPe5nzz4CwYC+W0VVP9N2ez7A+oS/yWM1wH2rfb8F08W/F46BvjvX1799bOQ+HvVAPicwJr/4HZM8G01Lv4ChyTxWR0Y/9MzjPorqDz/+K4y/9zJ3vQWaDT+tfxA/oJ2IP3NYMr6/U5s/qRhZP7rTrz2mYBI+6aJCP9ZuMj+c8nE+WjVlPwP4fL/WxKa+eFQdvwY1Rz/zZ4K/HSz9PgwWsL5Rnya/droLPV+NBL/qP46+KkOlv/TM4z6K6g8/LMVpP8P1Sj7KvTo+kz8SP04LtT+t6DA/L6CZv275lj5kfRK/j5GMPSjcyb/Rggq/fh8AQGDAgD8fp9O+sMftPmvpRL6vnIo/SJGxv31Vnz53hN2+LVYnv1NbhD2JVk4+xljvvypDpb/0zOM+JrDjv/4rjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACK41S1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA43ZyPQAAAABZiN2/AAAAAPBcYj0AAAAA0n3+PwAAAABsiaw9AAAAAMxO4T8AAAAAtivjPQAAAACAnPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKL3WNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCjdDb4AAAAAiK7ovwAAAAD3dbA8AAAAAPDN7z8AAAAAX2pYPQAAAAARCfo/AAAAANWTbr0AAAAAyS/tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMvQ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICLIZ09AAAAAMoj7r8AAAAAl84KvQAAAACY0/0/AAAAAO6Gxb0AAAAAPNvlPwAAAABV4a69AAAAAOgK/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADt6wO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYn0BPgAAAAC9zea/AAAAAAH3970AAAAANaL8PwAAAACSmky8AAAAAG0w4z8AAAAAadiuPQAAAACqZtm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIJ+GalUIcCMAWyUTb0BjAF0lEdAqAKix7iQ1nV9lChoBkdAm88UBbOeKGgHTegDaAhHQKgDf+hoM8Z1fZQoaAZHQJ2fsZxaPjpoB03oA2gIR0CoBk655JK8dX2UKGgGR0CdX5P/aQFLaAdN6ANoCEdAqAs3CsOoYXV9lChoBkdAnw6MQyylemgHTegDaAhHQKgOAtPHktF1fZQoaAZHQJytCt2cJ+loB03oA2gIR0CoDudiUgSwdX2UKGgGR0CdLSog3cYZaAdN6ANoCEdAqBHWqrBCU3V9lChoBkdAn3bYiHIp6WgHTegDaAhHQKgWukzGgjB1fZQoaAZHQJvusrd30PJoB03oA2gIR0CoGZSIgvDhdX2UKGgGR0CYnXzLOiWWaAdN6ANoCEdAqBpzaTOgQHV9lChoBkdAms2GOhkAgmgHTegDaAhHQKgdTn0TURZ1fZQoaAZHQJsO7iYLLIRoB03oA2gIR0CoIla3iJfqdX2UKGgGR0CfaNnPmganaAdN6ANoCEdAqCUgOz6acHV9lChoBkdAoD5yoqCpWGgHTegDaAhHQKgl+ovzvql1fZQoaAZHQJ1TlxJd0JZoB03oA2gIR0CoKNlrEcbSdX2UKGgGR0CgHQeHJtBOaAdN6ANoCEdAqC3E690zTHV9lChoBkdAlPTREKE39GgHTegDaAhHQKgwrN8ma6V1fZQoaAZHQJm/vcgyM1loB03oA2gIR0CoMY+Vkc0cdX2UKGgGR0Cbi18Empl0aAdN6ANoCEdAqDRkJrtVrHV9lChoBkdAlZ2gUg0TDmgHTegDaAhHQKg5VwNLDht1fZQoaAZHQJuZk1n/T9doB03oA2gIR0CoPDcQiA2AdX2UKGgGR0CU7kMNtqHoaAdN6ANoCEdAqD0aqOtGNXV9lChoBkdAmTBxmbsniWgHTegDaAhHQKg//8Yyfth1fZQoaAZHQJ+5gMb3oLZoB03oA2gIR0CoRPmyPdVOdX2UKGgGR0CdZyi48U22aAdN6ANoCEdAqEfglt0mt3V9lChoBkdAnU6wYLsru2gHTegDaAhHQKhIzfb9If91fZQoaAZHQJ9ek9aEBbRoB03oA2gIR0CoS7uZ9d/sdX2UKGgGR0CabtHlfZ27aAdN6ANoCEdAqFDEU/OdG3V9lChoBkdAoC/n6qKgqWgHTegDaAhHQKhTkwK0D2d1fZQoaAZHQJ7PNqEeyRloB03oA2gIR0CoVHYku6ErdX2UKGgGR0CgapyC4BmxaAdN6ANoCEdAqFdhFVktmXV9lChoBkdAnmQTkhib2GgHTegDaAhHQKhcPXDm8ul1fZQoaAZHQJ55OzTnaFpoB03oA2gIR0CoXwGnn+yadX2UKGgGR0CgMgSgPEsKaAdN6ANoCEdAqF/byH2ys3V9lChoBkdAnnFf82rGR2gHTegDaAhHQKhirPdl/Yt1fZQoaAZHQJ95/3/Pw/hoB03oA2gIR0CoZ7CsfaHsdX2UKGgGR0CbNC29L6DXaAdN6ANoCEdAqGp9Sde6Z3V9lChoBkdAnhcs54nndWgHTegDaAhHQKhrZqcEvCd1fZQoaAZHQJp8y8brC3xoB03oA2gIR0CobkFlK9PDdX2UKGgGR0CeKuH4GlhxaAdN6ANoCEdAqHNgk3S8anV9lChoBkdAmMicf3evZGgHTegDaAhHQKh2TXpW3jN1fZQoaAZHQJoDVAjY7JZoB03oA2gIR0Codz163RXwdX2UKGgGR0CW5YzWwu/UaAdN6ANoCEdAqHo6AYpDu3V9lChoBkdAml6/3ztkWmgHTegDaAhHQKh/QA5q/M51fZQoaAZHQJvaaxNZeRhoB03oA2gIR0Cogis85jpcdX2UKGgGR0CTJfZZjhDPaAdN6ANoCEdAqIMaa9bosHV9lChoBkdAj1Rwkona4GgHTegDaAhHQKiGDzasZHd1fZQoaAZHQKBzQvLX+VFoB03oA2gIR0Coit8ZLqUvdX2UKGgGR0Ccuim16Vt5aAdN6ANoCEdAqI28yeqaPXV9lChoBkdAnW2A7YChe2gHTegDaAhHQKiOpqbjLjh1fZQoaAZHQJxRfTspobpoB03oA2gIR0CokZr3TNMXdX2UKGgGR0CZDg5WilBQaAdN6ANoCEdAqJZzyvs7dXV9lChoBkdAmvVLBbfP5mgHTegDaAhHQKiZRZdOZb91fZQoaAZHQJSrwytV7yBoB03oA2gIR0Comil+NLlFdX2UKGgGR0CT2ts9B8hLaAdN6ANoCEdAqJ0hRsMy8HV9lChoBkdAmkhKu8scyWgHTegDaAhHQKiiHX3g1m91fZQoaAZHQJh4sbcXWOJoB03oA2gIR0CopQ5qVQhwdX2UKGgGR0CcmTn5i3G5aAdN6ANoCEdAqKXxl+Vkc3V9lChoBkdAnUK5Ig/1QWgHTegDaAhHQKiowVxCIDZ1fZQoaAZHQJsnsaVD8cdoB03oA2gIR0CordbHyVfNdX2UKGgGR0CZ6SS/0ulHaAdN6ANoCEdAqLCzP8hs7HV9lChoBkdAl56n3QD3d2gHTegDaAhHQKixnXPqs2h1fZQoaAZHQJsXmNEPUa1oB03oA2gIR0CotKayrxRVdX2UKGgGR0By6rEMspXqaAdN6ANoCEdAqLm6NyYG+3V9lChoBkdAkBHjMJQcgmgHTegDaAhHQKi8lzhgmZ51fZQoaAZHQJcov0K7ZnNoB03oA2gIR0CovXgV45cUdX2UKGgGR0CalLdmQKa5aAdN6ANoCEdAqMBUhC+lCXV9lChoBkdAm928m0E5hmgHTegDaAhHQKjFjxjriVB1fZQoaAZHQJdmQJdB0IVoB03oA2gIR0CoyG0DuBtldX2UKGgGR0CcBKGgzxgBaAdN6ANoCEdAqMlYFkhA4XV9lChoBkdAmsJz1bqyGGgHTegDaAhHQKjMP8rI5o51fZQoaAZHQJSoz6Q/5cloB03oA2gIR0Co0TM41gpjdX2UKGgGR0CalOAuIyj6aAdN6ANoCEdAqNQKnivPknV9lChoBkdAm2Mw+t8uz2gHTegDaAhHQKjVCg6EJ0J1fZQoaAZHQJscUqur6tVoB03oA2gIR0Co2BhrFfiQdX2UKGgGR0CdyxbiqABlaAdN6ANoCEdAqN1mIwdsBXV9lChoBkdAnGDAZflZHWgHTegDaAhHQKjghMFEAo51fZQoaAZHQJyuvyz5XU9oB03oA2gIR0Co4XcCYCyRdX2UKGgGR0Cc5b6OHWSVaAdN6ANoCEdAqORkr9VFQXV9lChoBkdAndUul0o0AWgHTegDaAhHQKjphN5dGAl1fZQoaAZHQJzw7ck+otNoB03oA2gIR0Co7G0oKD02dX2UKGgGR0CdWSpqynk1aAdN6ANoCEdAqO1ZS9/SY3V9lChoBkdAnSxOg6EJ0GgHTegDaAhHQKjwR9+gDih1fZQoaAZHQJco22jO9nNoB03oA2gIR0Co9VNkOI69dX2UKGgGR0CZKn0ngHeKaAdN6ANoCEdAqPg4ysS00HV9lChoBkdAm6yH9itq6GgHTegDaAhHQKj5JVrAP/d1fZQoaAZHQJ1WoSpR4yJoB03oA2gIR0Co/BEZJkGzdX2UKGgGR0CcqyzuWrwOaAdN6ANoCEdAqQEx4Uvf0nV9lChoBkdAnjVVdgOSXGgHTegDaAhHQKkEE+eOGTN1fZQoaAZHQJf6gwaisXBoB03oA2gIR0CpBPzKkl/pdX2UKGgGR0CgX7/8VHnVaAdN6ANoCEdAqQfzE3sHB3V9lChoBkdAm2ex5Pdl/mgHTegDaAhHQKkNClruYyB1fZQoaAZHQJarnK5kK/poB03oA2gIR0CpEAKkM1CPdX2UKGgGR0CZtzM+eOGTaAdN6ANoCEdAqRDn7N0NjXV9lChoBkdAm1nK4QSSNmgHTegDaAhHQKkT4kIHC411fZQoaAZHQJpDn1h9b5doB03oA2gIR0CpGO5NGmUGdX2UKGgGR0CdmfjTKDChaAdN6ANoCEdAqRvYcrAgxXV9lChoBkdAnyG7UG3WnWgHTegDaAhHQKkcuxbB42V1fZQoaAZHQJxS0OPNmlJoB03oA2gIR0CpH6wX668QdX2UKGgGR0CZigXfZVXFaAdN6ANoCEdAqSSnh/Aj6nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98e2ba039cce47ba763e306e2be9df75cf7a5a53a328e4047d0f28c1287f2737
|
3 |
+
size 1065151
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1776.233553926053, "std_reward": 237.93791107391533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T22:23:10.865642"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71d1beecf0a81a43691b3f4386dd38300d1ca550e8c996847c24f564543c2de8
|
3 |
+
size 2136
|