File size: 7,089 Bytes
7edf3cc 8a040ba 7edf3cc 08a375a 7edf3cc 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc acd1887 3a8faef 7edf3cc 8a040ba 7edf3cc 8a040ba 7edf3cc aa78d10 8a040ba 7edf3cc 3b244a5 7edf3cc 8a040ba 7edf3cc 8a040ba 7edf3cc 08a375a 8a040ba 08a375a 8a040ba 08a375a 8a040ba 08a375a 7edf3cc 8a040ba dbf8983 8a040ba be209e7 8a040ba aa61b9e 8a040ba 7edf3cc bfcf539 7edf3cc 08a375a 7edf3cc 8a040ba 08a375a 7edf3cc 8a040ba 7edf3cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
license: other
base_model: "stabilityai/stable-diffusion-3.5-medium"
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'a picture of tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'young tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'a stoic photograph of tommy chong. he looks off into the distance, standing up against the railing of a ship. the sky is cloudy.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'an elderly tommy chong as a contestant on Wheel of Fortune'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'tommy chong as a superhero in the style of studio ghibli. he wears a metal armor suit with glowing lights and power indicators.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'tommy chong in a casket, dead. he is dead and it is a funeral. the text overhead says ''HE HAS NOT RISEN''.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'a picture of cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'young cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'a stoic photograph of cheech marin. he looks off into the distance, standing up against the railing of a ship. the sky is cloudy.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'an elderly cheech marin as a contestant on Wheel of Fortune'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'cheech marin as a superhero in the style of studio ghibli. he wears a metal armor suit with glowing lights and power indicators.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
- text: 'cheech marin in a casket, dead. he is dead and it is a funeral. the text overhead says ''HE HAS NOT RISEN''.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_12_0.png
- text: 'cheech marin sitting to the left of tommy chong on the set of a television interview'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_13_0.png
- text: 'cheech marin sitting to the right of tommy chong on the set of a television interview'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_14_0.png
- text: 'cheech and chong sitting together on the stoop of a new york apartment building, 1972'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_15_0.png
- text: 'the iconic duo cheech and chong on stage performing stand-up comedy together in 2008'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_16_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_17_0.png
---
# sd3-cheechandchong-regularised
This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co./stabilityai/stable-diffusion-3.5-medium).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 3
- Training steps: 1100
- Learning rate: 0.0001
- Max grad norm: 0.01
- Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: bnb-adamw8bit
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"bypass_mode": true,
"algo": "lokr",
"multiplier": 1.0,
"full_matrix": true,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 12,
"apply_preset": {
"target_module": [
"JointTransformerBlock"
],
"module_algo_map": {
"FeedForward": {
"factor": 6
},
"JointTransformerBlock": {
"factor": 12
}
}
}
}
```
## Datasets
### cheechandchong-uncropped-512
- Repeats: 10
- Total number of images: ~24
- Total number of aspect buckets: 5
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cheechandchong-cropped-512
- Repeats: 10
- Total number of images: ~24
- Total number of aspect buckets: 5
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cheechandchong-uncropped-1024
- Repeats: 10
- Total number of images: ~24
- Total number of aspect buckets: 7
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cheechandchong-cropped-1024
- Repeats: 10
- Total number of images: ~24
- Total number of aspect buckets: 7
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|