--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - klue language: - ko license: cc-by-4.0 --- # bespin-global/klue-sroberta-base-continue-learning-by-mnr 해당 모델은 KLUE/NLI, KLUE/STS 데이터셋을 활용하였으며, sentence-transformers의 공식 문서 내 소개된 [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) 방법을 통해 아래와 같이 학습되었습니다. 1. NLI 데이터셋을 통해 nagative sampling 후, MultipleNegativeRankingLoss를 활용하여 1차 NLI training 수행 2. 1에서 학습완료 된 모델에 STS 데이터셋을 통해, CosineSimilarityLoss를 활용하여 2차 STS training 수행 학습에 관한 자세한 내용은 [Blog](https://velog.io/@jaehyeong/Basic-NLP-sentence-transformers-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC%EB%A5%BC-%ED%99%9C%EC%9A%A9%ED%95%9C-SBERT-%ED%95%99%EC%8A%B5-%EB%B0%A9%EB%B2%95#225-continue-learning-by-sts)와 [Colab 실습 코드](https://colab.research.google.com/drive/1uDt3o_Nv2cTiVbIAIUkst_eOSD37Wkmf)를 참고해주세요. --- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr") model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results **EmbeddingSimilarityEvaluator: Evaluating the model on sts-test dataset:** - Cosine-Similarity : - Pearson: 0.8901 Spearman: 0.8893 - Manhattan-Distance: - Pearson: 0.8867 Spearman: 0.8818 - Euclidean-Distance: - Pearson: 0.8875 Spearman: 0.8827 - Dot-Product-Similarity: - Pearson: 0.8786 Spearman: 0.8735 - Average : 0.8892573547643868 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 329 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 32, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 132, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors [JaeHyeong AN](https://huggingface.co./Copycats) at [Bespin Global](https://www.bespinglobal.com/)