File size: 35,177 Bytes
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
 
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75469bd
 
 
 
 
 
 
 
 
 
dfbe656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
 
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
75469bd
 
dfbe656
 
 
75469bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbe656
 
75469bd
 
 
 
 
 
 
dfbe656
75469bd
 
 
 
dfbe656
75469bd
 
dfbe656
75469bd
dfbe656
75469bd
 
 
 
 
dfbe656
 
 
 
 
 
 
75469bd
 
 
dfbe656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co./models?filter=masked-lm
"""
import logging
import json
import os
import shutil
import sys
import tempfile
import time
from collections import defaultdict
from dataclasses import dataclass, field

# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
import joblib
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import datasets
import numpy as np
from datasets import load_dataset
from tqdm import tqdm

import flax
import jax
import jax.numpy as jnp
import kenlm  # pip install https://github.com/kpu/kenlm/archive/master.zip
import optax
from flax import jax_utils, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForMaskedLM,
    HfArgumentParser,
    PreTrainedTokenizerBase,
    TensorType,
    TrainingArguments,
    is_tensorboard_available,
    set_seed,
    FlaxRobertaForMaskedLM,
    RobertaForMaskedLM,
)


if datasets.__version__ <= "1.8.0":
    raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")


MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
        },
    )

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated. Default to the max input length of the model."
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    text_column_name: str = field(
        default="text", metadata={"help": "The name of the column to retrieve the training text."}
    )
    shuffle_buffer_size: int = field(
        default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
    )
    num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
    num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`train_file` should be a csv, a json (lines) or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`validation_file` should be a csv, a json (lines) or a txt file."


@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
    """
    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
    are not all of the same length.

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
            The probability with which to (randomly) mask tokens in the input.

    .. note::

        For best performance, this data collator should be used with a dataset having items that are dictionaries or
        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
        argument :obj:`return_special_tokens_mask=True`.
    """

    tokenizer: PreTrainedTokenizerBase
    mlm_probability: float = 0.15

    def __post_init__(self):
        if self.tokenizer.mask_token is None:
            raise ValueError(
                "This tokenizer does not have a mask token which is necessary for masked language modeling. "
                "You should pass `mlm=False` to train on causal language modeling instead."
            )

    def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
        # Handle dict or lists with proper padding and conversion to tensor.
        batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)

        # If special token mask has been preprocessed, pop it from the dict.
        special_tokens_mask = batch.pop("special_tokens_mask", None)

        batch["input_ids"], batch["labels"] = self.mask_tokens(
            batch["input_ids"], special_tokens_mask=special_tokens_mask
        )
        return batch

    def mask_tokens(
        self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
    ) -> Tuple[jnp.ndarray, jnp.ndarray]:
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        labels = inputs.copy()
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        probability_matrix = np.full(labels.shape, self.mlm_probability)
        special_tokens_mask = special_tokens_mask.astype("bool")

        probability_matrix[special_tokens_mask] = 0.0
        masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
        labels[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
        inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
        indices_random &= masked_indices & ~indices_replaced

        random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels


@dataclass
class SamplingArguments:
    """
    Arguments pertaining to how to perform sampling of the dataset.
    """

    perplexity_model: Optional[str] = field(
        default="./es.arpa.bin", metadata={"help": "Path to KenLM model to use to get perplexity values."}
    )
    sampling_method: Optional[str] = field(
        default=None, metadata={"help": "Sample using a 'step' or 'gaussian' perplexity function per document, or 'random'."}
    )
    sampling_factor: Optional[float]  = field(
        default=None, metadata={"help": "Sampling factor. Integers for step function, decimals for gaussian."}
    )
    boundaries: Optional[str] = field(
        default="536394.99320948,662247.50212365,919250.87225178", metadata={"help": "Quartile boundaries"}
    )

    def __post_init__(self):
        self.boundaries = [float(q.strip()) for q in self.boundaries.split(",")]


def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
    num_samples = len(samples_idx)
    samples_to_remove = num_samples % batch_size

    if samples_to_remove != 0:
        samples_idx = samples_idx[:-samples_to_remove]
    sections_split = num_samples // batch_size
    batch_idx = np.split(samples_idx, sections_split)
    return batch_idx


def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
    """
    The training iterator is advanced so that after groupifying the samples,
    `num_samples` of length `max_seq_length` are returned.
    """
    num_total_tokens = max_seq_length * num_samples
    samples = defaultdict(list)

    i = 0
    while i < num_total_tokens:
        tokenized_samples = next(train_iterator)
        i += len(tokenized_samples["input_ids"])

        # concatenate tokenized samples to list
        samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}

    # Concatenated tokens are split to lists of length `max_seq_length`.
    # Note that remainedr of % max_seq_length are thrown away.
    def group_texts(examples):
        result = {
            k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
            for k, t in examples.items()
        }
        return result

    grouped_samples = group_texts(samples)
    return grouped_samples


def write_train_metric(summary_writer, train_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)


def write_eval_metric(summary_writer, eval_metrics, step):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def save_checkpoint_files(state, data_collator, training_args, save_dir):
    unreplicated_state = jax_utils.unreplicate(state)
    with open(os.path.join(save_dir, "optimizer_state.msgpack"), "wb") as f:
        f.write(to_bytes(unreplicated_state.opt_state))
    joblib.dump(training_args, os.path.join(save_dir, "training_args.joblib"))
    joblib.dump(data_collator, os.path.join(save_dir, "data_collator.joblib"))
    with open(os.path.join(save_dir, "training_state.json"), "w") as f:
        json.dump({"step": unreplicated_state.step.item()}, f)


def restore_checkpoint(save_dir, state):
    logger.info(f"Restoring checkpoint from {save_dir}")
    with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
        params = from_bytes(state.params, f.read())

    with open(os.path.join(save_dir, "optimizer_state.msgpack"), "rb") as f:
        opt_state = from_bytes(state.opt_state, f.read())

    args = joblib.load(os.path.join(save_dir, "training_args.joblib"))
    data_collator = joblib.load(os.path.join(save_dir, "data_collator.joblib"))

    with open(os.path.join(save_dir, "training_state.json"), "r") as f:
        training_state = json.load(f)
    step = training_state["step"]

    return params, opt_state, step, args, data_collator


def rotate_checkpoints(path, max_checkpoints=5):
    paths = sorted(Path(path).iterdir(), key=os.path.getmtime)[::-1]
    if len(paths) > max_checkpoints:
        for path_to_delete in paths[max_checkpoints:]:
            try:
                shutil.rmtree(path_to_delete)
            except OSError:
                os.remove(path_to_delete)


def to_f32(t):
    return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)


def convert(output_dir, destination_dir="./"):
    shutil.copyfile(Path(output_dir) / "flax_model.msgpack", Path(destination_dir) / "flax_model.msgpack")
    shutil.copyfile(Path(output_dir) / "config.json", Path(destination_dir) / "config.json")
    # Saving extra files from config.json and tokenizer.json files
    tokenizer = AutoTokenizer.from_pretrained(destination_dir)
    tokenizer.save_pretrained(destination_dir)

    # Temporary saving bfloat16 Flax model into float32
    tmp = tempfile.mkdtemp()
    flax_model = FlaxRobertaForMaskedLM.from_pretrained(destination_dir)
    flax_model.params = to_f32(flax_model.params)
    flax_model.save_pretrained(tmp)
    # Converting float32 Flax to PyTorch
    model = RobertaForMaskedLM.from_pretrained(tmp, from_flax=True)
    model.save_pretrained(destination_dir, save_config=False)


if __name__ == "__main__":
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, SamplingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, sampling_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, sampling_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        level="INFO",
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co./datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        filepaths = {}
        if data_args.train_file:
            filepaths["train"] = data_args.train_file
        if data_args.validation_file:
            filepaths["validation"] = data_args.validation_file
        try:
            dataset = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                cache_dir=model_args.cache_dir,
                streaming=True,
                split="train",
                sampling_method=sampling_args.sampling_method,
                sampling_factor=sampling_args.sampling_factor,
                boundaries=sampling_args.boundaries,
                perplexity_model=sampling_args.perplexity_model,
                seed=training_args.seed,
                data_files=filepaths,
            )
        except Exception as exc:
            logger.warning(
                f"Unable to load local dataset with perplexity sampling support. Using huggingface.co/datasets/{data_args.dataset_name}: {exc}"
            )
            dataset = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                cache_dir=model_args.cache_dir,
                streaming=True,
                split="train",
            )

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
    # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
    # efficient when it receives the `special_tokens_mask`.
    def tokenize_function(examples):
        return tokenizer(
            examples[data_args.text_column_name],
            return_special_tokens_mask=True
        )

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
    )

    shuffle_seed = training_args.seed
    tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            # Enable Weight&Biases
            import wandb
            wandb.init(
                entity='wandb',
                project='hf-flax-bertin-roberta-es',
                sync_tensorboard=True,
            )
            wandb.config.update(training_args)
            wandb.config.update(model_args)
            wandb.config.update(data_args)
            from flax.metrics.tensorboard import SummaryWriter
            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    if model_args.model_name_or_path:
        model = FlaxAutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )
    else:
        model = FlaxAutoModelForMaskedLM.from_config(
            config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()

    # define number steps per stream epoch
    num_train_steps = data_args.num_train_steps

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    # Note that this mask is specifically adapted for FlaxBERT-like models.
    # For other models, one should correct the layer norm parameter naming
    # accordingly.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
    saved_step = -1
    if model_args.model_name_or_path and "checkpoint" in model_args.model_name_or_path:
        params, opt_state, saved_step, args, data_collator = restore_checkpoint(model_args.model_name_or_path, state)
        # Create learning rate schedule
        warmup_fn = optax.linear_schedule(
            init_value=0.0, end_value=args.learning_rate, transition_steps=args.warmup_steps
        )
        decay_fn = optax.linear_schedule(
            init_value=args.learning_rate,
            end_value=0,
            transition_steps=data_args.num_train_steps - args.warmup_steps,
        )
        linear_decay_lr_schedule_fn = optax.join_schedules(
            schedules=[warmup_fn, decay_fn], boundaries=[args.warmup_steps]
        )
        # create adam optimizer
        adamw = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=args.weight_decay,
            mask=decay_mask_fn,
        )
        state = train_state.TrainState(
            step=saved_step,
            apply_fn=model.__call__,
            params=params,
            tx=adamw,
            opt_state=opt_state,
        )
        # self.args = args
        # data_collator = data_collator
        # scheduler_fn = args.learning_rate
        model.params = params


    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def loss_fn(params):
            labels = batch.pop("labels")

            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]

            # compute loss, ignore padded input tokens
            label_mask = jnp.where(labels > 0, 1.0, 0.0)
            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

            # take average
            loss = loss.sum() / label_mask.sum()

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
        )

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss, ignore padded input tokens
        label_mask = jnp.where(labels > 0, 1.0, 0.0)
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask

        # summarize metrics
        metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
        metrics = jax.lax.psum(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    train_start = time.time()
    train_metrics = []
    eval_metrics = []

    training_iter = iter(tokenized_datasets)

    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
    eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)

    last_desc = ""
    steps = tqdm(range(num_train_steps), desc="Training...", position=0)
    for step in range(num_train_steps):
        if step < saved_step:
            steps.update(1)
            continue
        # ======================== Training ================================
        try:
            samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
        except StopIteration:
            # Once the end of the dataset stream is reached, the training iterator
            # is reinitialized and reshuffled and a new eval dataset is randomely chosen.
            shuffle_seed += 1
            tokenized_datasets.set_epoch(shuffle_seed)

            training_iter = iter(tokenized_datasets)

            eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
            samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)

        # process input samples
        model_inputs = data_collator(samples, pad_to_multiple_of=16)

        # Model forward
        model_inputs = shard(model_inputs.data)
        state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)

        train_metrics.append(train_metric)

        if step % training_args.logging_steps == 0 and step > 0:
            steps.write(
                f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
            )
            train_time += time.time() - train_start
            if has_tensorboard and jax.process_index() == 0:
                write_train_metric(summary_writer, train_metrics, train_time, step)
            train_metrics = []

        # ======================== Evaluating ==============================
        if step % training_args.eval_steps == 0 and step > 0:
            eval_samples_idx = jnp.arange(data_args.num_eval_samples)
            eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)

            for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
                # process input samples
                batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
                model_inputs = data_collator(batch_eval_samples, pad_to_multiple_of=16)

                # Model forward
                model_inputs = shard(model_inputs.data)
                metrics = p_eval_step(state.params, model_inputs)
                eval_metrics.append(metrics)

            # normalize eval metrics
            eval_metrics = get_metrics(eval_metrics)
            eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
            eval_normalizer = eval_metrics.pop("normalizer")
            eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)

            # Update progress bar
            steps.desc = f"Step... ({step}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
            last_desc = steps.desc

            if has_tensorboard and jax.process_index() == 0:
                write_eval_metric(summary_writer, eval_metrics, step)
            eval_metrics = []

        # save checkpoint after eval_steps
        if step % training_args.save_steps == 0 and step > 0 and jax.process_index() == 0:
            logger.info(f"Saving checkpoint at {step} steps")
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(
                training_args.output_dir,
                params=params,
                push_to_hub=False,
            )
            save_checkpoint_files(state, data_collator, training_args, training_args.output_dir)
            checkpoints_dir = Path(training_args.output_dir) / "checkpoints" / f"checkpoint-{step}"
            checkpoints_dir.mkdir(parents=True, exist_ok=True)
            model.save_pretrained(checkpoints_dir, params=params)
            save_checkpoint_files(state, data_collator, training_args, checkpoints_dir)
            rotate_checkpoints(
                Path(training_args.output_dir) / "checkpoints",
                max_checkpoints=training_args.save_total_limit
            )
            convert(training_args.output_dir, "./")
            model.save_pretrained(
                training_args.output_dir,
                params=params,
                push_to_hub=training_args.push_to_hub,
                commit_message=last_desc,
            )

        # update tqdm bar
        steps.update(1)

    if jax.process_index() == 0:
        logger.info(f"Saving checkpoint at {step} steps")
        params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
        model.save_pretrained(
            training_args.output_dir,
            params=params,
            push_to_hub=False,
        )
        save_checkpoint_files(state, data_collator, training_args, training_args.output_dir)
        checkpoints_dir = Path(training_args.output_dir) / "checkpoints" / f"checkpoint-{step}"
        checkpoints_dir.mkdir(parents=True, exist_ok=True)
        model.save_pretrained(checkpoints_dir, params=params)
        save_checkpoint_files(state, data_collator, training_args, checkpoints_dir)
        convert(training_args.output_dir, "./")
        model.save_pretrained(
            training_args.output_dir,
            params=params,
            push_to_hub=training_args.push_to_hub,
            commit_message=last_desc or "Saving model after training",
        )