benchang1110 commited on
Commit
36aea8a
·
verified ·
1 Parent(s): acb7035

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -153
README.md CHANGED
@@ -1,6 +1,10 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -11,189 +15,101 @@ tags: []
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
 
 
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
 
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
 
 
 
 
 
83
 
84
  ### Training Procedure
85
-
86
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - benchang1110/TaiVision-pretrain-1M
5
+ language:
6
+ - zh
7
+ pipeline_tag: image-text-to-text
8
  ---
9
 
10
  # Model Card for Model ID
 
15
 
16
  ## Model Details
17
 
18
+ ## English
19
+ # TaiVisionLM: The First of Its Kind! 🚀
 
 
 
20
 
21
+ 🌟 This is a very fast and small (only 1.2B parameters) visual language model on Hugging Face that responds to Traditional Chinese instructions given an image input! 🌟
 
 
 
 
 
 
22
 
23
+ Developed compatible with the Transformers library, TaiVisionLM is a breeze to load, fine-tune, and use for lightning-fast inferences—all without needing any external libraries! ⚡️
24
 
25
+ Ready to experience the Traditional Chinese visual language model? Let's go! 🖼️🤖
26
 
 
 
 
27
 
28
+ ## Traditional Chinese
29
+ # 臺視: 首創獨一無二的視覺語言模型!! 🚀
30
 
31
+ 🌟 TaiVisionLM 是一個非常快速且小巧的視覺語言模型(僅有 12 億參數),在 Hugging Face 上可以根據圖像輸入來回應繁體中文指令!🌟
32
 
33
+ TaiVisionLM 與 Transformers 完全相容,易於載入、微調和使用,用於快速推理——不需要任何外部庫!⚡️
34
 
35
+ 準備好體驗這個繁體中文視覺語言模型了嗎?讓我們開始吧!🖼️🤖
36
 
 
37
 
 
38
 
39
+ ---
40
 
41
+ # Model Details
42
 
43
+ ## English
44
+ This model is a multimodal large language model that combines [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) as its vision encoder with [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) as its language model. The vision projector connects the two modalities together.
45
+ Its architecture closely resembles [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma).
46
 
47
+ Here's the summary of the development process:
48
 
49
+ 1) **Unimodal pretraining**
50
+ - In this stage, instead of pretraining both modalities from scratch, I leverage the image encoder from [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) and the language model trained by ourselves (https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat).
51
+ 2) **Feature Alignment**
52
+ - Following the [LLaVA training recipe](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#train), I train the vision projector using 1B image-text pairs to align visual and textual features.
53
+ 3) **Task Specific Training**
54
+ - The aligned model undergoes further training for tasks such as short captioning, detailed captioning, and simple visual question answering, using over 1M image-prompt-completion triplets.
55
+ We will undergo this stage after the dataset is ready!
56
 
57
+ ## 中文
58
+ 這個模型是一個多模態的語言模型,結合了 [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) 作為其視覺編碼器,並使用 [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) 作為語言模型。視覺投影器將這兩種模態結合在一起。
59
+ 其架構與 [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma) 非常相似。
60
 
61
+ 以下是開發過程的摘要:
62
 
63
+ 1) **單模態預訓練**
64
+ - 在這個階段,我利用了 [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) 的圖像編碼器,以及我們自己訓練的語言模型([Taiwan-tinyllama-v1.0-chat](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat))。
65
+ 2) **特徵對齊**
66
+ - ���據 [LLaVA](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#train),我使用 10 億個圖文配對數據來訓練視覺投影器,以對齊視覺和文本特徵。
67
+ 3) **任務特定訓練**
68
+ - 對齊後的模型進行進一步的訓練,針對短描述、詳細描述和簡單視覺問答等任務,使用超過 100 萬組圖像-提示-完成三元組數據進行訓練。我們將在數據集準備好後進行這一階段的訓練!
69
 
70
+ ### Model Description
71
+ <!-- Provide a longer summary of what this model is. -->
72
 
73
+ - **Developed by:** [ucsahin](https://huggingface.co/benchang1110)
74
+ - **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
75
+ - **Language(s) (NLP):** *Turkish*
76
+ - **License:** *Apache license 2.0*
77
 
78
+ ---
79
 
80
  ## How to Get Started with the Model
81
 
82
+ In Transformers, you can load the model and do inference as follows:
83
 
84
+ **IMPORTANT NOTE:** TaiVisionLM model is not yet integrated natively into the Transformers library. So you need to set ```trust_remote_code=True``` when loading the model. It will download the ```configuration_taivisionlm.py```, ```modeling_taivisionlm.py``` and ```processing_taivisionlm.py``` files from the repo. You can check out the content of these files under the *Files and Versions* tab and pin the specific versions if you have any concerns regarding malicious code.
85
 
86
+ ```python
87
+ from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
88
+ from PIL import Image
89
+ import requests
90
+ import torch
91
 
92
+ config = AutoConfig.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True)
93
+ processor = AutoProcessor.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True)
94
+ model = AutoModelForCausalLM.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True,torch_dtype=torch.float16,attn_implementation="sdpa").to('cuda')
95
+ model.eval()
96
+ url = "https://media.wired.com/photos/598e35fb99d76447c4eb1f28/master/pass/phonepicutres-TA.jpg"
97
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
98
+ text = "描述圖片"
99
+ inputs = processor(text=text,images=image, return_tensors="pt",padding=False).to('cuda')
100
+ outputs = processor.tokenizer.decode(model.generate(**inputs,max_length=512)[0])
101
+ print(outputs)
102
+ ```
103
 
104
  ### Training Procedure
 
105
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
106
+ The following training hyperparameters are used in feature alignment and task specific training stages respectively:
107
 
108
+ - **Feature Alignment**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
+ | Data size | Global Batch Size | Learning Rate | Epochs | Max Length | Weight Decay |
111
+ |--------------|-------------------|---------------|--------|------------|--------------|
112
+ | 1B | 16 | 5e-4 | 1 | 2048 | 1e-5 |
113
 
 
114
 
115
+ We use full-parameter finetuning for the projector and apply LoRA to the language model.