File size: 4,998 Bytes
1fb3924 a70f643 1fb3924 6c5396a 7ffa8af 02aecb6 d4a17bc 02aecb6 d4a17bc 7ffa8af 02aecb6 7ffa8af 02aecb6 7ffa8af 02aecb6 d4a17bc 02aecb6 7ffa8af 02aecb6 d4a17bc 02aecb6 a70f643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
extra_gated_heading: Acknowledge license to accept the repository
extra_gated_button_content: Acknowledge license
pipeline_tag: translation
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: cc-by-nc-sa-4.0
---
This is a [COMET](https://github.com/Unbabel/COMET) quality estimation model by Unbabel: It receives a source sentence and the respective translation and returns a score that reflects the quality of the translation.
# Paper
[CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task](https://aclanthology.org/2022.wmt-1.60) (Rei et al., WMT 2022)
# License:
cc-by-nc-sa-4.0
# Usage for Inference Endpoint
```python
import json
import requests
API_URL = ""
API_TOKEN="MY_API_KEY"
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json",
}
def query(url, headers, payload):
data = json.dumps(payload)
response = requests.request("POST", url, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
payload = {
"inputs": {
"batch_size": 8,
"workers": None,
"data": [
{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},{
"src": "Youll be picking fruit and generally helping us do all the usual farm work",
"mt": "๋น์ ์ ๊ณผ์ผ์ ๋ฐ๊ธฐ๋ ํ๊ณ ๋์ฒด๋ก ์ฐ๋ฆฌ๊ฐ ํ๋ ์ผ์์ ์ธ ๋์ฅ ์ผ์ ๋๊ฒ ๋ ๊ฒ๋๋ค",
},
]
}
}
scores = query(API_URL, headers, payload)
```
# Intended uses
Unbabel's model is intented to be used for **reference-free MT evaluation**.
Given a source text and its translation, outputs a single score between 0 and 1 where 1 represents a perfect translation.
# Languages Covered:
This model builds on top of InfoXLM which cover the following languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
Thus, results for language pairs containing uncovered languages are unreliable! |