--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: belisards/congretimbau results: [] --- # belisards/congretimbau This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co./belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1877 - Accuracy: 0.7891 - F1: 0.7273 - Recall: 0.7564 - Precision: 0.7128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 120 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.29 | 1.0 | 35 | 0.2717 | 0.5625 | 0.5209 | 0.5478 | 0.5371 | | 0.2615 | 2.0 | 70 | 0.2353 | 0.5357 | 0.5344 | 0.6643 | 0.6468 | | 0.2189 | 3.0 | 105 | 0.1945 | 0.8036 | 0.7637 | 0.7889 | 0.7506 | | 0.1579 | 4.0 | 140 | 0.1931 | 0.7857 | 0.7375 | 0.7545 | 0.7273 | | 0.1078 | 5.0 | 175 | 0.2402 | 0.8036 | 0.7496 | 0.7553 | 0.7447 | | 0.0596 | 6.0 | 210 | 0.2657 | 0.7946 | 0.7591 | 0.7941 | 0.7458 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0