File size: 4,523 Bytes
cf0e92b
 
 
 
c37bafa
cf0e92b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
base_model: MCG-NJU/videomae-large-finetuned-kinetics
metrics:
- accuracy
model-index:
- name: MAE-CT-CPC-Dicotomized-v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MAE-CT-CPC-Dicotomized-v3

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co./MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8472
- Accuracy: 0.7317

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5652        | 0.02  | 81   | 0.6260          | 0.6829   |
| 0.6109        | 1.02  | 162  | 0.6052          | 0.6829   |
| 0.7142        | 2.02  | 243  | 0.6207          | 0.6829   |
| 0.5037        | 3.02  | 324  | 0.6219          | 0.6829   |
| 0.5177        | 4.02  | 405  | 0.6456          | 0.6829   |
| 0.5363        | 5.02  | 486  | 0.5791          | 0.6829   |
| 0.6797        | 6.02  | 567  | 0.6295          | 0.6829   |
| 0.557         | 7.02  | 648  | 0.5182          | 0.7073   |
| 0.5645        | 8.02  | 729  | 0.4608          | 0.7073   |
| 0.4484        | 9.02  | 810  | 0.4721          | 0.7805   |
| 0.3354        | 10.02 | 891  | 0.7011          | 0.7317   |
| 0.2875        | 11.02 | 972  | 0.4498          | 0.7805   |
| 0.3535        | 12.02 | 1053 | 0.8161          | 0.7561   |
| 0.294         | 13.02 | 1134 | 0.5175          | 0.7805   |
| 0.1907        | 14.02 | 1215 | 0.3750          | 0.8537   |
| 0.2533        | 15.02 | 1296 | 0.6400          | 0.7805   |
| 0.2499        | 16.02 | 1377 | 0.9233          | 0.7805   |
| 0.2726        | 17.02 | 1458 | 1.0686          | 0.7805   |
| 0.4447        | 18.02 | 1539 | 1.0433          | 0.7073   |
| 0.1554        | 19.02 | 1620 | 1.0791          | 0.8293   |
| 0.0163        | 20.02 | 1701 | 1.0939          | 0.7317   |
| 0.0507        | 21.02 | 1782 | 1.1601          | 0.8049   |
| 0.0116        | 22.02 | 1863 | 1.3358          | 0.7073   |
| 0.015         | 23.02 | 1944 | 1.0973          | 0.8049   |
| 0.1993        | 24.02 | 2025 | 1.2985          | 0.7805   |
| 0.1496        | 25.02 | 2106 | 1.1559          | 0.7805   |
| 0.2059        | 26.02 | 2187 | 1.5124          | 0.7561   |
| 0.0176        | 27.02 | 2268 | 1.4691          | 0.7805   |
| 0.2477        | 28.02 | 2349 | 1.5908          | 0.7805   |
| 0.0007        | 29.02 | 2430 | 1.3929          | 0.7805   |
| 0.0003        | 30.02 | 2511 | 1.3020          | 0.7805   |
| 0.0002        | 31.02 | 2592 | 1.5539          | 0.7805   |
| 0.0001        | 32.02 | 2673 | 1.5173          | 0.8049   |
| 0.0001        | 33.02 | 2754 | 1.6113          | 0.8049   |
| 0.0918        | 34.02 | 2835 | 1.5837          | 0.7805   |
| 0.0001        | 35.02 | 2916 | 1.4928          | 0.8049   |
| 0.0001        | 36.02 | 2997 | 1.4138          | 0.8049   |
| 0.2197        | 37.02 | 3078 | 1.3980          | 0.8049   |
| 0.0001        | 38.02 | 3159 | 1.6004          | 0.8049   |
| 0.0002        | 39.02 | 3240 | 1.5590          | 0.8049   |
| 0.0246        | 40.02 | 3321 | 1.5889          | 0.7805   |
| 0.0002        | 41.02 | 3402 | 1.6164          | 0.7805   |
| 0.0001        | 42.02 | 3483 | 1.6072          | 0.7805   |
| 0.0001        | 43.02 | 3564 | 1.6259          | 0.7805   |
| 0.0001        | 44.02 | 3645 | 1.5990          | 0.7805   |
| 0.0002        | 45.02 | 3726 | 1.5517          | 0.7805   |
| 0.0           | 46.02 | 3807 | 1.5260          | 0.7805   |
| 0.0146        | 47.02 | 3888 | 1.5292          | 0.7805   |
| 0.0001        | 48.02 | 3969 | 1.5405          | 0.7805   |
| 0.0001        | 49.01 | 4000 | 1.5414          | 0.7805   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.15.1