--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: MAE-CT-CPC-Dicotomized-n0-m1-d1-v9 results: [] --- # MAE-CT-CPC-Dicotomized-n0-m1-d1-v9 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co./MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6419 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.6819 | 0.0204 | 49 | 0.6641 | 0.5789 | | 0.6201 | 1.0204 | 98 | 0.6368 | 0.5789 | | 0.6787 | 2.0204 | 147 | 0.6109 | 0.5789 | | 0.6484 | 3.0204 | 196 | 0.6305 | 0.6316 | | 0.6357 | 4.0204 | 245 | 0.6794 | 0.5263 | | 0.5692 | 5.0204 | 294 | 0.6938 | 0.5263 | | 0.658 | 6.0204 | 343 | 0.6696 | 0.5789 | | 0.5112 | 7.0204 | 392 | 0.5669 | 0.6316 | | 0.3719 | 8.0204 | 441 | 0.8023 | 0.6316 | | 0.4573 | 9.0204 | 490 | 0.5991 | 0.6316 | | 0.2915 | 10.0204 | 539 | 0.7899 | 0.6842 | | 0.3723 | 11.0204 | 588 | 0.9848 | 0.5263 | | 0.1372 | 12.0204 | 637 | 0.9510 | 0.6316 | | 0.0066 | 13.0204 | 686 | 1.1872 | 0.5789 | | 0.2218 | 14.0204 | 735 | 1.1692 | 0.7368 | | 0.7666 | 15.0204 | 784 | 1.1125 | 0.6842 | | 0.2171 | 16.0204 | 833 | 1.2615 | 0.7368 | | 0.1152 | 17.0204 | 882 | 1.3683 | 0.7368 | | 0.1941 | 18.0204 | 931 | 1.3915 | 0.7368 | | 0.0233 | 19.0204 | 980 | 1.5972 | 0.5789 | | 0.2367 | 20.0204 | 1029 | 1.7445 | 0.6842 | | 0.1575 | 21.0204 | 1078 | 2.4036 | 0.6316 | | 0.0008 | 22.0204 | 1127 | 2.2633 | 0.6316 | | 0.019 | 23.0204 | 1176 | 2.2078 | 0.6842 | | 0.0006 | 24.0204 | 1225 | 2.1281 | 0.6316 | | 0.0004 | 25.0204 | 1274 | 2.0100 | 0.7368 | | 0.0002 | 26.0204 | 1323 | 2.3862 | 0.6316 | | 0.0003 | 27.0204 | 1372 | 2.1579 | 0.6842 | | 0.0372 | 28.0204 | 1421 | 2.1226 | 0.6842 | | 0.1547 | 29.0204 | 1470 | 2.4949 | 0.6842 | | 0.0015 | 30.0204 | 1519 | 1.8815 | 0.6842 | | 0.0005 | 31.0204 | 1568 | 2.2582 | 0.6316 | | 0.0002 | 32.0204 | 1617 | 2.1774 | 0.6316 | | 0.0001 | 33.0204 | 1666 | 2.2222 | 0.6316 | | 0.0001 | 34.0204 | 1715 | 2.3560 | 0.6316 | | 0.0001 | 35.0204 | 1764 | 2.3904 | 0.6316 | | 0.0001 | 36.0204 | 1813 | 2.2240 | 0.7368 | | 0.0002 | 37.0204 | 1862 | 2.2880 | 0.6842 | | 0.0002 | 38.0204 | 1911 | 2.3010 | 0.6842 | | 0.0001 | 39.0204 | 1960 | 2.3124 | 0.6842 | | 0.0001 | 40.0204 | 2009 | 2.2903 | 0.6842 | | 0.1744 | 41.0204 | 2058 | 2.3067 | 0.6842 | | 0.0001 | 42.0204 | 2107 | 2.3422 | 0.6842 | | 0.0001 | 43.0204 | 2156 | 2.3477 | 0.6842 | | 0.0001 | 44.0204 | 2205 | 2.3783 | 0.6316 | | 0.0001 | 45.0204 | 2254 | 2.3447 | 0.6842 | | 0.0001 | 46.0204 | 2303 | 2.3415 | 0.6842 | | 0.0001 | 47.0204 | 2352 | 2.3419 | 0.6842 | | 0.0001 | 48.02 | 2400 | 2.3470 | 0.6842 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0