File size: 4,605 Bytes
a235b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MAE-CT-CPC-Dicotomized-n0-m1-d1-v9
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MAE-CT-CPC-Dicotomized-n0-m1-d1-v9

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co./MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6419
- Accuracy: 0.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2400

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.6819        | 0.0204  | 49   | 0.6641          | 0.5789   |
| 0.6201        | 1.0204  | 98   | 0.6368          | 0.5789   |
| 0.6787        | 2.0204  | 147  | 0.6109          | 0.5789   |
| 0.6484        | 3.0204  | 196  | 0.6305          | 0.6316   |
| 0.6357        | 4.0204  | 245  | 0.6794          | 0.5263   |
| 0.5692        | 5.0204  | 294  | 0.6938          | 0.5263   |
| 0.658         | 6.0204  | 343  | 0.6696          | 0.5789   |
| 0.5112        | 7.0204  | 392  | 0.5669          | 0.6316   |
| 0.3719        | 8.0204  | 441  | 0.8023          | 0.6316   |
| 0.4573        | 9.0204  | 490  | 0.5991          | 0.6316   |
| 0.2915        | 10.0204 | 539  | 0.7899          | 0.6842   |
| 0.3723        | 11.0204 | 588  | 0.9848          | 0.5263   |
| 0.1372        | 12.0204 | 637  | 0.9510          | 0.6316   |
| 0.0066        | 13.0204 | 686  | 1.1872          | 0.5789   |
| 0.2218        | 14.0204 | 735  | 1.1692          | 0.7368   |
| 0.7666        | 15.0204 | 784  | 1.1125          | 0.6842   |
| 0.2171        | 16.0204 | 833  | 1.2615          | 0.7368   |
| 0.1152        | 17.0204 | 882  | 1.3683          | 0.7368   |
| 0.1941        | 18.0204 | 931  | 1.3915          | 0.7368   |
| 0.0233        | 19.0204 | 980  | 1.5972          | 0.5789   |
| 0.2367        | 20.0204 | 1029 | 1.7445          | 0.6842   |
| 0.1575        | 21.0204 | 1078 | 2.4036          | 0.6316   |
| 0.0008        | 22.0204 | 1127 | 2.2633          | 0.6316   |
| 0.019         | 23.0204 | 1176 | 2.2078          | 0.6842   |
| 0.0006        | 24.0204 | 1225 | 2.1281          | 0.6316   |
| 0.0004        | 25.0204 | 1274 | 2.0100          | 0.7368   |
| 0.0002        | 26.0204 | 1323 | 2.3862          | 0.6316   |
| 0.0003        | 27.0204 | 1372 | 2.1579          | 0.6842   |
| 0.0372        | 28.0204 | 1421 | 2.1226          | 0.6842   |
| 0.1547        | 29.0204 | 1470 | 2.4949          | 0.6842   |
| 0.0015        | 30.0204 | 1519 | 1.8815          | 0.6842   |
| 0.0005        | 31.0204 | 1568 | 2.2582          | 0.6316   |
| 0.0002        | 32.0204 | 1617 | 2.1774          | 0.6316   |
| 0.0001        | 33.0204 | 1666 | 2.2222          | 0.6316   |
| 0.0001        | 34.0204 | 1715 | 2.3560          | 0.6316   |
| 0.0001        | 35.0204 | 1764 | 2.3904          | 0.6316   |
| 0.0001        | 36.0204 | 1813 | 2.2240          | 0.7368   |
| 0.0002        | 37.0204 | 1862 | 2.2880          | 0.6842   |
| 0.0002        | 38.0204 | 1911 | 2.3010          | 0.6842   |
| 0.0001        | 39.0204 | 1960 | 2.3124          | 0.6842   |
| 0.0001        | 40.0204 | 2009 | 2.2903          | 0.6842   |
| 0.1744        | 41.0204 | 2058 | 2.3067          | 0.6842   |
| 0.0001        | 42.0204 | 2107 | 2.3422          | 0.6842   |
| 0.0001        | 43.0204 | 2156 | 2.3477          | 0.6842   |
| 0.0001        | 44.0204 | 2205 | 2.3783          | 0.6316   |
| 0.0001        | 45.0204 | 2254 | 2.3447          | 0.6842   |
| 0.0001        | 46.0204 | 2303 | 2.3415          | 0.6842   |
| 0.0001        | 47.0204 | 2352 | 2.3419          | 0.6842   |
| 0.0001        | 48.02   | 2400 | 2.3470          | 0.6842   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0