--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE-P2-V5-3g-S5 results: [] --- # CTMAE-P2-V5-3g-S5 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co./MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5090 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 13050 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8752 | 0.02 | 261 | 2.0009 | 0.4667 | | 0.5365 | 1.02 | 522 | 2.8415 | 0.4667 | | 1.8181 | 2.02 | 783 | 2.1331 | 0.4667 | | 0.6674 | 3.02 | 1044 | 2.5703 | 0.4667 | | 1.7586 | 4.02 | 1305 | 1.1413 | 0.4667 | | 1.0731 | 5.02 | 1566 | 1.8862 | 0.4667 | | 1.3539 | 6.02 | 1827 | 1.8277 | 0.4667 | | 0.8906 | 7.02 | 2088 | 1.7559 | 0.4667 | | 1.5706 | 8.02 | 2349 | 2.0014 | 0.4667 | | 0.3113 | 9.02 | 2610 | 1.3058 | 0.6667 | | 1.6658 | 10.02 | 2871 | 1.5835 | 0.6444 | | 1.3587 | 11.02 | 3132 | 0.8309 | 0.7556 | | 0.31 | 12.02 | 3393 | 0.8154 | 0.7778 | | 1.2834 | 13.02 | 3654 | 0.5090 | 0.8667 | | 0.7111 | 14.02 | 3915 | 1.2500 | 0.6889 | | 2.3551 | 15.02 | 4176 | 0.6881 | 0.8222 | | 0.2734 | 16.02 | 4437 | 0.4506 | 0.8444 | | 0.9675 | 17.02 | 4698 | 1.7515 | 0.6667 | | 0.449 | 18.02 | 4959 | 0.7240 | 0.7778 | | 0.5843 | 19.02 | 5220 | 0.9561 | 0.7778 | | 1.0949 | 20.02 | 5481 | 1.2866 | 0.6889 | | 1.2073 | 21.02 | 5742 | 1.0336 | 0.7556 | | 1.3534 | 22.02 | 6003 | 1.8029 | 0.7111 | | 0.0423 | 23.02 | 6264 | 1.4571 | 0.7111 | | 1.0068 | 24.02 | 6525 | 1.7790 | 0.6444 | | 1.5772 | 25.02 | 6786 | 1.7893 | 0.6667 | | 0.8409 | 26.02 | 7047 | 1.6454 | 0.6667 | | 0.6828 | 27.02 | 7308 | 1.8521 | 0.6889 | | 0.5191 | 28.02 | 7569 | 1.2734 | 0.7556 | | 0.4537 | 29.02 | 7830 | 1.8099 | 0.7111 | | 0.003 | 30.02 | 8091 | 1.5860 | 0.7333 | | 0.0004 | 31.02 | 8352 | 2.2568 | 0.6444 | | 0.1452 | 32.02 | 8613 | 2.4112 | 0.6444 | | 0.3815 | 33.02 | 8874 | 1.3679 | 0.7556 | | 0.0013 | 34.02 | 9135 | 1.8306 | 0.7111 | | 0.7655 | 35.02 | 9396 | 1.4608 | 0.7333 | | 0.003 | 36.02 | 9657 | 2.2029 | 0.6667 | | 0.0246 | 37.02 | 9918 | 2.7586 | 0.6222 | | 0.0007 | 38.02 | 10179 | 2.6804 | 0.6444 | | 0.5967 | 39.02 | 10440 | 2.5969 | 0.6444 | | 0.0006 | 40.02 | 10701 | 2.6381 | 0.6444 | | 0.0004 | 41.02 | 10962 | 2.9591 | 0.6222 | | 0.0004 | 42.02 | 11223 | 2.1240 | 0.7111 | | 1.109 | 43.02 | 11484 | 2.7634 | 0.6 | | 1.074 | 44.02 | 11745 | 2.1595 | 0.7111 | | 0.0016 | 45.02 | 12006 | 1.8538 | 0.7556 | | 0.0002 | 46.02 | 12267 | 1.9419 | 0.7556 | | 0.0005 | 47.02 | 12528 | 1.8378 | 0.7778 | | 0.0001 | 48.02 | 12789 | 2.0625 | 0.7333 | | 0.59 | 49.02 | 13050 | 2.0340 | 0.7333 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0