--- license: cc-by-nc-4.0 tags: - merge model-index: - name: Nyxene-v3-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.62 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.33 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.75 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.91 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.19 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Nyxene-v3-11B name: Open LLM Leaderboard --- ## Description This repo contains bf16 files of Nyxene-v1-11B. Just new version with some new things. ## Model used - [Intel/neural-chat-7b-v3-3-Slerp](https://huggingface.co./Intel/neural-chat-7b-v3-3-Slerp) - [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co./AIDC-ai-business/Marcoroni-7B-v3) - [rwitz/go-bruins-v2](https://huggingface.co./rwitz/go-bruins-v2) - [chargoddard/loyal-piano-m7-cdpo](https://huggingface.co./chargoddard/loyal-piano-m7-cdpo) ## Prompt template Just use chatml. ## The secret sauce go-bruins-loyal-piano-11B : ``` slices: - sources: - model: rwitz/go-bruins-v2 layer_range: [0, 24] - sources: - model: chargoddard/loyal-piano-m7-cdpo layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` neural-marcoroni-11B : ``` slices: - sources: - model: AIDC-ai-business/Marcoroni-7B-v3 layer_range: [0, 24] - sources: - model: Intel/neural-chat-7b-v3-3-Slerp layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` Nyxene-11B : ``` slices: - sources: - model: "./go-bruins-loyal-piano-11B" layer_range: [0, 48] - model: "./neural-marcoroni-11B" layer_range: [0, 48] merge_method: slerp base_model: "./go-bruins-loyal-piano-11B" parameters: t: - filter: lm_head value: [0.5] - filter: embed_tokens value: [0.75] - filter: self_attn value: [0.75, 0.25] - filter: mlp value: [0.25, 0.75] - filter: layernorm value: [0.5, 0.5] - filter: modelnorm value: [0.5] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 ``` I use [mergekit](https://github.com/cg123/mergekit) for all the manipulation told here. Thanks to the [Undi95](https://huggingface.co./Undi95) for the original [11B mistral merge](https://huggingface.co./Undi95/Mistral-11B-OmniMix) recipe. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_beberik__Nyxene-v3-11B) | Metric |Value| |---------------------------------|----:| |Avg. |70.72| |AI2 Reasoning Challenge (25-Shot)|69.62| |HellaSwag (10-Shot) |85.33| |MMLU (5-Shot) |64.75| |TruthfulQA (0-shot) |60.91| |Winogrande (5-shot) |80.19| |GSM8k (5-shot) |63.53|