Image-Text-to-Text
Transformers
Safetensors
English
Chinese
llava
vision-language
llm
lmm
conversational
Inference Endpoints
bczhou commited on
Commit
064e744
·
verified ·
1 Parent(s): 33fb826

Create README.md

Browse files

**Model type:**
TinyLLaVA, a tiny model (1.4B) trained using the exact recipe of [llava](https://github.com/haotian-liu/LLaVA).
We trained our TinyLLaVA using [TinyLlama](https://huggingface.co./PY007/TinyLlama-1.1B-Chat-v0.3) as our LLM backbone, and [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) as our vision backbone.

**Model use:**
The weights have been converted to hf format.

## How to use the model

First, make sure to have `transformers >= 4.35.3`.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:

### Using `pipeline`:

Below we used [`"bczhou/tiny-llava-v1-hf"`](https://huggingface.co./bczhou/tiny-llava-v1-hf) checkpoint.

```python
from transformers import pipeline
from PIL import Image
import requests
model_id = "bczhou/tiny-llava-v1-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```

### Using pure `transformers`:

Below is an example script to run generation in `float16` precision on a GPU device:

```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "bczhou/tiny-llava-v1-hf"
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

Files changed (1) hide show
  1. README.md +10 -0
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - liuhaotian/LLaVA-Pretrain
5
+ - liuhaotian/LLaVA-Instruct-150K
6
+ language:
7
+ - en
8
+ - zh
9
+ library_name: transformers
10
+ ---