bczhou commited on
Commit
71e73b5
β€’
1 Parent(s): 0ceedac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -19
README.md CHANGED
@@ -19,8 +19,9 @@ tags:
19
 
20
  [![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
21
 
22
-
23
  ## 🎉 News
 
 
24
  * **[2024.02.25]** Update evaluation scripts and docs!
25
  * **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
26
  * **[2024.02.24]** Example code on inference and model loading added!
@@ -31,7 +32,8 @@ tags:
31
 
32
  ## ⌛ TODO
33
  - [ ] Add support for Ollama and llama.cpp.
34
- - [ ] Developers' guide / How to build demo locally.
 
35
  - [x] Model Zoo descriptions.
36
  - [x] Examples and inference.
37
  - [x] Release code for training.
@@ -44,22 +46,17 @@ tags:
44
 
45
  - Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
46
 
47
- ## 🐳 Model Zoo
48
- ### Legacy Model
49
- - [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
50
-
51
- ### Pretrained Models
52
- - [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
53
- - [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
54
- - [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
55
-
56
- ### Model Details
57
- | Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
58
- |---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
59
- | TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
60
- | TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
61
- | TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
62
 
 
 
 
 
 
 
 
 
 
63
 
64
 
65
  ## 🔧 Requirements and Installation
@@ -85,7 +82,7 @@ pip install -e .
85
  pip install -e ".[train]"
86
  pip install flash-attn --no-build-isolation
87
  ```
88
- ### Upgrade to latest code base
89
 
90
  ```Shell
91
  git pull
@@ -95,6 +92,41 @@ pip install -e .
95
  # pip install flash-attn --no-build-isolation --no-cache-dir
96
  ```
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
  ## 🔧 Quick Start
100
 
@@ -151,7 +183,7 @@ eval_model(args)
151
  ### Important
152
  We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
153
  | model | conv_mode |
154
- |-------------------|---------------|
155
  | TinyLLaVA-3.1B | phi |
156
  | TinyLLaVA-2.0B | phi |
157
  | TinyLLaVA-1.5B | v1 |
@@ -161,6 +193,115 @@ To ensure the reproducibility, we evaluate the models with greedy decoding.
161
 
162
  See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
  ## ✏ Citation
166
 
@@ -176,3 +317,8 @@ If you find our paper and code useful in your research, please consider giving a
176
  primaryClass={cs.LG}
177
  }
178
  ```
 
 
 
 
 
 
19
 
20
  [![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
21
 
 
22
  ## 🎉 News
23
+ * **[2024.03.10]** base recipe out!
24
+ * **[2024.03.10]** Finetune scripts out!
25
  * **[2024.02.25]** Update evaluation scripts and docs!
26
  * **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
27
  * **[2024.02.24]** Example code on inference and model loading added!
 
32
 
33
  ## ⌛ TODO
34
  - [ ] Add support for Ollama and llama.cpp.
35
+ - [x] Developers' guide / How to build demo locally.
36
+ - [x] Training and custom finetuning docs.
37
  - [x] Model Zoo descriptions.
38
  - [x] Examples and inference.
39
  - [x] Release code for training.
 
46
 
47
  - Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
48
 
49
+ ## Contents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ - [Install](#x1f527-requirements-and-installation)
52
+ - [Model Zoo](#x1f433-model-zoo)
53
+ - [Demo](#Demo)
54
+ - [Quick Start](#x1f527-quick-start)
55
+ - [Run Inference](#x1f527-run-inference)
56
+ - [Evaluation](#evaluation)
57
+ - [Data](#data-preparation)
58
+ - [Train](#train)
59
+ - [Custom Finetune](#custom-finetune)
60
 
61
 
62
  ## 🔧 Requirements and Installation
 
82
  pip install -e ".[train]"
83
  pip install flash-attn --no-build-isolation
84
  ```
85
+ ### Upgrade to the latest code base
86
 
87
  ```Shell
88
  git pull
 
92
  # pip install flash-attn --no-build-isolation --no-cache-dir
93
  ```
94
 
95
+ ## 🐳 Model Zoo
96
+ ### Legacy Model
97
+ - [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
98
+
99
+ ### Pretrained Models
100
+ - [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
101
+ - [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
102
+ - [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
103
+
104
+ ### Model Details
105
+ | Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
106
+ |---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
107
+ | TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
108
+ | TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
109
+ | TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
110
+
111
+
112
+ ## Demo
113
+
114
+ ### Gradio Web Demo
115
+
116
+ Launch a local web demo by running:
117
+ ```shell
118
+ python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
119
+ ```
120
+
121
+ ### CLI Inference
122
+
123
+ We also support running inference with CLI. To use our model, run:
124
+ ```shell
125
+ python -m tinyllava.serve.cli \
126
+ --model-path bczhou/TinyLLaVA-3.1B \
127
+ --image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
128
+ ```
129
+
130
 
131
  ## 🔧 Quick Start
132
 
 
183
  ### Important
184
  We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
185
  | model | conv_mode |
186
+ |---------------- |----------- |
187
  | TinyLLaVA-3.1B | phi |
188
  | TinyLLaVA-2.0B | phi |
189
  | TinyLLaVA-1.5B | v1 |
 
193
 
194
  See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
195
 
196
+ ## Data Preparation
197
+
198
+ In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
199
+
200
+ ### Pretraining Images
201
+ * LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
202
+ * ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
203
+
204
+ ### Pretraining Annotations
205
+ * LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
206
+ * ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
207
+
208
+
209
+ ### SFT Images & Annotations
210
+ The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
211
+
212
+ ### Download data
213
+
214
+ 1. Download relevant images
215
+
216
+ - LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
217
+ - COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
218
+ - WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
219
+ - SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
220
+ - GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
221
+ - OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
222
+ - TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
223
+ - VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
224
+
225
+
226
+ 2. Download relevant annotations
227
+
228
+ - LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
229
+ - LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
230
+ - ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
231
+ - ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
232
+
233
+
234
+ ### Organize Data
235
+
236
+ Organize the image files and annotation files as follows in `path/to/your/data`:
237
+
238
+ ```none
239
+ data
240
+ β”œβ”€β”€ llava
241
+ β”‚ β”œβ”€β”€ llava_pretrain
242
+ β”‚ β”‚ β”œβ”€β”€ images
243
+ β”‚ β”‚ β”œβ”€β”€ blip_laion_cc_sbu_558k.json
244
+ β”œβ”€β”€ coco
245
+ β”‚ β”œβ”€β”€ train2017
246
+ β”œβ”€β”€ sam
247
+ β”‚ β”œβ”€β”€ images
248
+ β”œβ”€β”€ gqa
249
+ β”‚ β”œβ”€β”€ images
250
+ β”œβ”€β”€ ocr_vqa
251
+ β”‚ β”œβ”€β”€ images
252
+ β”œβ”€β”€ textvqa
253
+ β”‚ β”œβ”€β”€ train_images
254
+ β”œβ”€β”€ vg
255
+ β”‚ β”œβ”€β”€ VG_100K
256
+ β”‚ β”œβ”€β”€ VG_100K_2
257
+ β”œβ”€β”€ share_textvqa
258
+ β”‚ β”œβ”€β”€ images
259
+ β”œβ”€β”€ web-celebrity
260
+ β”‚ β”œβ”€β”€ images
261
+ β”œβ”€β”€ web-landmark
262
+ β”‚ β”œβ”€β”€ images
263
+ β”œβ”€β”€ wikiart
264
+ β”‚ β”œβ”€β”€ images
265
+ β”œβ”€β”€ text_files
266
+ β”‚ β”œβ”€β”€ llava_v1_5_mix665k.json
267
+ β”‚ β”œβ”€β”€ share-captioner_coco_lcs_sam_1246k_1107.json
268
+ β”‚ β”œβ”€β”€ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
269
+ ```
270
+
271
+ ## Train
272
+
273
+ **This section we describe the base recipe.**
274
+ ### Hyperparameters
275
+ Both hyperparameters used in pretraining and finetuning are provided below.
276
+
277
+ 1. Pretraining
278
+
279
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
280
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
281
+ | TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
282
+
283
+ 2. Finetuning
284
+
285
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
286
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
287
+ | TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
288
+
289
+ ### Pretrain
290
+
291
+ **Replace paths to your paths**
292
+
293
+ Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
294
+
295
+ ### Finetune
296
+
297
+ **Replace paths to your paths**
298
+
299
+ Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
300
+
301
+ ## Custom-Finetune
302
+
303
+ Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
304
+
305
 
306
  ## ✏ Citation
307
 
 
317
  primaryClass={cs.LG}
318
  }
319
  ```
320
+
321
+
322
+ ## ❀️ Community efforts
323
+ * Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
324
+ * Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!