--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner results: [] --- # roberta-base-ner This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co./bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1328 - Precision: 0.9248 - Recall: 0.9325 - F1: 0.9286 - Accuracy: 0.9805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.17 | 1.0 | 477 | 0.0823 | 0.8652 | 0.9001 | 0.8823 | 0.9739 | | 0.0567 | 2.0 | 954 | 0.0883 | 0.9070 | 0.9296 | 0.9182 | 0.9778 | | 0.0278 | 3.0 | 1431 | 0.0904 | 0.9165 | 0.9302 | 0.9233 | 0.9789 | | 0.0158 | 4.0 | 1908 | 0.0945 | 0.9220 | 0.9301 | 0.9260 | 0.9798 | | 0.0089 | 5.0 | 2385 | 0.1118 | 0.9227 | 0.9287 | 0.9257 | 0.9799 | | 0.0061 | 6.0 | 2862 | 0.1154 | 0.9212 | 0.9309 | 0.9260 | 0.9803 | | 0.0037 | 7.0 | 3339 | 0.1240 | 0.9253 | 0.9320 | 0.9286 | 0.9806 | | 0.0023 | 8.0 | 3816 | 0.1293 | 0.9232 | 0.9316 | 0.9274 | 0.9803 | | 0.0013 | 9.0 | 4293 | 0.1323 | 0.9253 | 0.9332 | 0.9292 | 0.9806 | | 0.0012 | 10.0 | 4770 | 0.1328 | 0.9248 | 0.9325 | 0.9286 | 0.9805 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1