bayartsogt commited on
Commit
f4b56cf
·
1 Parent(s): 688f69e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: roberta-base-ner
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # roberta-base-ner
20
+
21
+ This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1328
24
+ - Precision: 0.9248
25
+ - Recall: 0.9325
26
+ - F1: 0.9286
27
+ - Accuracy: 0.9805
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.17 | 1.0 | 477 | 0.0823 | 0.8652 | 0.9001 | 0.8823 | 0.9739 |
59
+ | 0.0567 | 2.0 | 954 | 0.0883 | 0.9070 | 0.9296 | 0.9182 | 0.9778 |
60
+ | 0.0278 | 3.0 | 1431 | 0.0904 | 0.9165 | 0.9302 | 0.9233 | 0.9789 |
61
+ | 0.0158 | 4.0 | 1908 | 0.0945 | 0.9220 | 0.9301 | 0.9260 | 0.9798 |
62
+ | 0.0089 | 5.0 | 2385 | 0.1118 | 0.9227 | 0.9287 | 0.9257 | 0.9799 |
63
+ | 0.0061 | 6.0 | 2862 | 0.1154 | 0.9212 | 0.9309 | 0.9260 | 0.9803 |
64
+ | 0.0037 | 7.0 | 3339 | 0.1240 | 0.9253 | 0.9320 | 0.9286 | 0.9806 |
65
+ | 0.0023 | 8.0 | 3816 | 0.1293 | 0.9232 | 0.9316 | 0.9274 | 0.9803 |
66
+ | 0.0013 | 9.0 | 4293 | 0.1323 | 0.9253 | 0.9332 | 0.9292 | 0.9806 |
67
+ | 0.0012 | 10.0 | 4770 | 0.1328 | 0.9248 | 0.9325 | 0.9286 | 0.9805 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.18.0
73
+ - Pytorch 1.11.0
74
+ - Datasets 2.1.0
75
+ - Tokenizers 0.12.1